(* Title: HOL/Auth/Kerberos_BAN_Gets.thy
Author: Giampaolo Bella, Catania University
*)
section\<open>The Kerberos Protocol, BAN Version, with Gets event\<close>
theory Kerberos_BAN_Gets imports Public begin
text\<open>From page 251 of
Burrows, Abadi and Needham (1989). A Logic of Authentication.
Proc. Royal Soc. 426
Confidentiality (secrecy) and authentication properties rely on
temporal checks: strong guarantees in a little abstracted - but
very realistic - model.
\<close>
(* Temporal modelization: session keys can be leaked
ONLY when they have expired *)
consts
(*Duration of the session key*)
sesKlife :: nat
(*Duration of the authenticator*)
authlife :: nat
text\<open>The ticket should remain fresh for two journeys on the network at least\<close>
text\<open>The Gets event causes longer traces for the protocol to reach its end\<close>
specification (sesKlife)
sesKlife_LB [iff]: "4 \<le> sesKlife"
by blast
text\<open>The authenticator only for one journey\<close>
text\<open>The Gets event causes longer traces for the protocol to reach its end\<close>
specification (authlife)
authlife_LB [iff]: "2 \<le> authlife"
by blast
abbreviation
CT :: "event list \<Rightarrow> nat" where
"CT == length"
abbreviation
expiredK :: "[nat, event list] \<Rightarrow> bool" where
"expiredK T evs == sesKlife + T < CT evs"
abbreviation
expiredA :: "[nat, event list] \<Rightarrow> bool" where
"expiredA T evs == authlife + T < CT evs"
definition
(* Yields the subtrace of a given trace from its beginning to a given event *)
before :: "[event, event list] \<Rightarrow> event list" ("before _ on _")
where "before ev on evs = takeWhile (\<lambda>z. z \<noteq> ev) (rev evs)"
definition
(* States than an event really appears only once on a trace *)
Unique :: "[event, event list] \<Rightarrow> bool" ("Unique _ on _")
where "Unique ev on evs = (ev \<notin> set (tl (dropWhile (\<lambda>z. z \<noteq> ev) evs)))"
inductive_set bankerb_gets :: "event list set"
where
Nil: "[] \<in> bankerb_gets"
| Fake: "\<lbrakk> evsf \<in> bankerb_gets; X \<in> synth (analz (knows Spy evsf)) \<rbrakk>
\<Longrightarrow> Says Spy B X # evsf \<in> bankerb_gets"
| Reception: "\<lbrakk> evsr\<in> bankerb_gets; Says A B X \<in> set evsr \<rbrakk>
\<Longrightarrow> Gets B X # evsr \<in> bankerb_gets"
| BK1: "\<lbrakk> evs1 \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says A Server \<lbrace>Agent A, Agent B\<rbrace> # evs1
\<in> bankerb_gets"
| BK2: "\<lbrakk> evs2 \<in> bankerb_gets; Key K \<notin> used evs2; K \<in> symKeys;
Gets Server \<lbrace>Agent A, Agent B\<rbrace> \<in> set evs2 \<rbrakk>
\<Longrightarrow> Says Server A
(Crypt (shrK A)
\<lbrace>Number (CT evs2), Agent B, Key K,
(Crypt (shrK B) \<lbrace>Number (CT evs2), Agent A, Key K\<rbrace>)\<rbrace>)
# evs2 \<in> bankerb_gets"
| BK3: "\<lbrakk> evs3 \<in> bankerb_gets;
Gets A (Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, Ticket\<rbrace>)
\<in> set evs3;
Says A Server \<lbrace>Agent A, Agent B\<rbrace> \<in> set evs3;
\<not> expiredK Tk evs3 \<rbrakk>
\<Longrightarrow> Says A B \<lbrace>Ticket, Crypt K \<lbrace>Agent A, Number (CT evs3)\<rbrace> \<rbrace>
# evs3 \<in> bankerb_gets"
| BK4: "\<lbrakk> evs4 \<in> bankerb_gets;
Gets B \<lbrace>(Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>),
(Crypt K \<lbrace>Agent A, Number Ta\<rbrace>) \<rbrace> \<in> set evs4;
\<not> expiredK Tk evs4; \<not> expiredA Ta evs4 \<rbrakk>
\<Longrightarrow> Says B A (Crypt K (Number Ta)) # evs4
\<in> bankerb_gets"
(*Old session keys may become compromised*)
| Oops: "\<lbrakk> evso \<in> bankerb_gets;
Says Server A (Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, Ticket\<rbrace>)
\<in> set evso;
expiredK Tk evso \<rbrakk>
\<Longrightarrow> Notes Spy \<lbrace>Number Tk, Key K\<rbrace> # evso \<in> bankerb_gets"
declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]
declare knows_Spy_partsEs [elim]
text\<open>A "possibility property": there are traces that reach the end.\<close>
lemma "\<lbrakk>Key K \<notin> used []; K \<in> symKeys\<rbrakk>
\<Longrightarrow> \<exists>Timestamp. \<exists>evs \<in> bankerb_gets.
Says B A (Crypt K (Number Timestamp))
\<in> set evs"
apply (cut_tac sesKlife_LB)
apply (cut_tac authlife_LB)
apply (intro exI bexI)
apply (rule_tac [2]
bankerb_gets.Nil [THEN bankerb_gets.BK1, THEN bankerb_gets.Reception,
THEN bankerb_gets.BK2, THEN bankerb_gets.Reception,
THEN bankerb_gets.BK3, THEN bankerb_gets.Reception,
THEN bankerb_gets.BK4])
apply (possibility, simp_all (no_asm_simp) add: used_Cons)
done
text\<open>Lemmas about reception invariant: if a message is received it certainly
was sent\<close>
lemma Gets_imp_Says :
"\<lbrakk> Gets B X \<in> set evs; evs \<in> bankerb_gets \<rbrakk> \<Longrightarrow> \<exists>A. Says A B X \<in> set evs"
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply auto
done
lemma Gets_imp_knows_Spy:
"\<lbrakk> Gets B X \<in> set evs; evs \<in> bankerb_gets \<rbrakk> \<Longrightarrow> X \<in> knows Spy evs"
apply (blast dest!: Gets_imp_Says Says_imp_knows_Spy)
done
lemma Gets_imp_knows_Spy_parts[dest]:
"\<lbrakk> Gets B X \<in> set evs; evs \<in> bankerb_gets \<rbrakk> \<Longrightarrow> X \<in> parts (knows Spy evs)"
apply (blast dest: Gets_imp_knows_Spy [THEN parts.Inj])
done
lemma Gets_imp_knows:
"\<lbrakk> Gets B X \<in> set evs; evs \<in> bankerb_gets \<rbrakk> \<Longrightarrow> X \<in> knows B evs"
by (metis Gets_imp_knows_Spy Gets_imp_knows_agents)
lemma Gets_imp_knows_analz:
"\<lbrakk> Gets B X \<in> set evs; evs \<in> bankerb_gets \<rbrakk> \<Longrightarrow> X \<in> analz (knows B evs)"
apply (blast dest: Gets_imp_knows [THEN analz.Inj])
done
text\<open>Lemmas for reasoning about predicate "before"\<close>
lemma used_Says_rev: "used (evs @ [Says A B X]) = parts {X} \<union> (used evs)"
apply (induct_tac "evs")
apply simp
apply (rename_tac a b)
apply (induct_tac "a")
apply auto
done
lemma used_Notes_rev: "used (evs @ [Notes A X]) = parts {X} \<union> (used evs)"
apply (induct_tac "evs")
apply simp
apply (rename_tac a b)
apply (induct_tac "a")
apply auto
done
lemma used_Gets_rev: "used (evs @ [Gets B X]) = used evs"
apply (induct_tac "evs")
apply simp
apply (rename_tac a b)
apply (induct_tac "a")
apply auto
done
lemma used_evs_rev: "used evs = used (rev evs)"
apply (induct_tac "evs")
apply simp
apply (rename_tac a b)
apply (induct_tac "a")
apply (simp add: used_Says_rev)
apply (simp add: used_Gets_rev)
apply (simp add: used_Notes_rev)
done
lemma used_takeWhile_used [rule_format]:
"x \<in> used (takeWhile P X) \<longrightarrow> x \<in> used X"
apply (induct_tac "X")
apply simp
apply (rename_tac a b)
apply (induct_tac "a")
apply (simp_all add: used_Nil)
apply (blast dest!: initState_into_used)+
done
lemma set_evs_rev: "set evs = set (rev evs)"
apply auto
done
lemma takeWhile_void [rule_format]:
"x \<notin> set evs \<longrightarrow> takeWhile (\<lambda>z. z \<noteq> x) evs = evs"
apply auto
done
(**** Inductive proofs about bankerb_gets ****)
text\<open>Forwarding Lemma for reasoning about the encrypted portion of message BK3\<close>
lemma BK3_msg_in_parts_knows_Spy:
"\<lbrakk>Gets A (Crypt KA \<lbrace>Timestamp, B, K, X\<rbrace>) \<in> set evs; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> X \<in> parts (knows Spy evs)"
apply blast
done
lemma Oops_parts_knows_Spy:
"Says Server A (Crypt (shrK A) \<lbrace>Timestamp, B, K, X\<rbrace>) \<in> set evs
\<Longrightarrow> K \<in> parts (knows Spy evs)"
apply blast
done
text\<open>Spy never sees another agent's shared key! (unless it's bad at start)\<close>
lemma Spy_see_shrK [simp]:
"evs \<in> bankerb_gets \<Longrightarrow> (Key (shrK A) \<in> parts (knows Spy evs)) = (A \<in> bad)"
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)
apply (frule_tac [6] BK3_msg_in_parts_knows_Spy, simp_all, blast+)
done
lemma Spy_analz_shrK [simp]:
"evs \<in> bankerb_gets \<Longrightarrow> (Key (shrK A) \<in> analz (knows Spy evs)) = (A \<in> bad)"
by auto
lemma Spy_see_shrK_D [dest!]:
"\<lbrakk> Key (shrK A) \<in> parts (knows Spy evs);
evs \<in> bankerb_gets \<rbrakk> \<Longrightarrow> A\<in>bad"
by (blast dest: Spy_see_shrK)
lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D, dest!]
text\<open>Nobody can have used non-existent keys!\<close>
lemma new_keys_not_used [simp]:
"\<lbrakk>Key K \<notin> used evs; K \<in> symKeys; evs \<in> bankerb_gets\<rbrakk>
\<Longrightarrow> K \<notin> keysFor (parts (knows Spy evs))"
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)
apply (frule_tac [6] BK3_msg_in_parts_knows_Spy, simp_all)
txt\<open>Fake\<close>
apply (force dest!: keysFor_parts_insert)
txt\<open>BK2, BK3, BK4\<close>
apply (force dest!: analz_shrK_Decrypt)+
done
subsection\<open>Lemmas concerning the form of items passed in messages\<close>
text\<open>Describes the form of K, X and K' when the Server sends this message.\<close>
lemma Says_Server_message_form:
"\<lbrakk> Says Server A (Crypt K' \<lbrace>Number Tk, Agent B, Key K, Ticket\<rbrace>)
\<in> set evs; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> K' = shrK A \<and> K \<notin> range shrK \<and>
Ticket = (Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>) \<and>
Key K \<notin> used(before
Says Server A (Crypt K' \<lbrace>Number Tk, Agent B, Key K, Ticket\<rbrace>)
on evs) \<and>
Tk = CT(before
Says Server A (Crypt K' \<lbrace>Number Tk, Agent B, Key K, Ticket\<rbrace>)
on evs)"
apply (unfold before_def)
apply (erule rev_mp)
apply (erule bankerb_gets.induct, simp_all)
txt\<open>We need this simplification only for Message 2\<close>
apply (simp (no_asm) add: takeWhile_tail)
apply auto
txt\<open>Two subcases of Message 2. Subcase: used before\<close>
apply (blast dest: used_evs_rev [THEN equalityD2, THEN contra_subsetD]
used_takeWhile_used)
txt\<open>subcase: CT before\<close>
apply (fastforce dest!: set_evs_rev [THEN equalityD2, THEN contra_subsetD, THEN takeWhile_void])
done
text\<open>If the encrypted message appears then it originated with the Server
PROVIDED that A is NOT compromised!
This allows A to verify freshness of the session key.
\<close>
lemma Kab_authentic:
"\<lbrakk> Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, X\<rbrace>
\<in> parts (knows Spy evs);
A \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says Server A (Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, X\<rbrace>)
\<in> set evs"
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)
apply (frule_tac [6] BK3_msg_in_parts_knows_Spy, simp_all, blast)
done
text\<open>If the TICKET appears then it originated with the Server\<close>
text\<open>FRESHNESS OF THE SESSION KEY to B\<close>
lemma ticket_authentic:
"\<lbrakk> Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace> \<in> parts (knows Spy evs);
B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says Server A
(Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K,
Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>\<rbrace>)
\<in> set evs"
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)
apply (frule_tac [6] BK3_msg_in_parts_knows_Spy, simp_all, blast)
done
text\<open>EITHER describes the form of X when the following message is sent,
OR reduces it to the Fake case.
Use \<open>Says_Server_message_form\<close> if applicable.\<close>
lemma Gets_Server_message_form:
"\<lbrakk> Gets A (Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, X\<rbrace>)
\<in> set evs;
evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> (K \<notin> range shrK \<and> X = (Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>))
| X \<in> analz (knows Spy evs)"
apply (case_tac "A \<in> bad")
apply (force dest!: Gets_imp_knows_Spy [THEN analz.Inj])
apply (blast dest!: Kab_authentic Says_Server_message_form)
done
text\<open>Reliability guarantees: honest agents act as we expect\<close>
lemma BK3_imp_Gets:
"\<lbrakk> Says A B \<lbrace>Ticket, Crypt K \<lbrace>Agent A, Number Ta\<rbrace>\<rbrace> \<in> set evs;
A \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> \<exists> Tk. Gets A (Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, Ticket\<rbrace>)
\<in> set evs"
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply auto
done
lemma BK4_imp_Gets:
"\<lbrakk> Says B A (Crypt K (Number Ta)) \<in> set evs;
B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> \<exists> Tk. Gets B \<lbrace>Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>,
Crypt K \<lbrace>Agent A, Number Ta\<rbrace>\<rbrace> \<in> set evs"
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply auto
done
lemma Gets_A_knows_K:
"\<lbrakk> Gets A (Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, Ticket\<rbrace>) \<in> set evs;
evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Key K \<in> analz (knows A evs)"
apply (force dest: Gets_imp_knows_analz)
done
lemma Gets_B_knows_K:
"\<lbrakk> Gets B \<lbrace>Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>,
Crypt K \<lbrace>Agent A, Number Ta\<rbrace>\<rbrace> \<in> set evs;
evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Key K \<in> analz (knows B evs)"
apply (force dest: Gets_imp_knows_analz)
done
(****
The following is to prove theorems of the form
Key K \<in> analz (insert (Key KAB) (knows Spy evs)) \<Longrightarrow>
Key K \<in> analz (knows Spy evs)
A more general formula must be proved inductively.
****)
text\<open>Session keys are not used to encrypt other session keys\<close>
lemma analz_image_freshK [rule_format (no_asm)]:
"evs \<in> bankerb_gets \<Longrightarrow>
\<forall>K KK. KK \<subseteq> - (range shrK) \<longrightarrow>
(Key K \<in> analz (Key`KK \<union> (knows Spy evs))) =
(K \<in> KK | Key K \<in> analz (knows Spy evs))"
apply (erule bankerb_gets.induct)
apply (drule_tac [8] Says_Server_message_form)
apply (erule_tac [6] Gets_Server_message_form [THEN disjE], analz_freshK, spy_analz, auto)
done
lemma analz_insert_freshK:
"\<lbrakk> evs \<in> bankerb_gets; KAB \<notin> range shrK \<rbrakk> \<Longrightarrow>
(Key K \<in> analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K \<in> analz (knows Spy evs))"
by (simp only: analz_image_freshK analz_image_freshK_simps)
text\<open>The session key K uniquely identifies the message\<close>
lemma unique_session_keys:
"\<lbrakk> Says Server A
(Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, X\<rbrace>) \<in> set evs;
Says Server A'
(Crypt (shrK A') \<lbrace>Number Tk', Agent B', Key K, X'\<rbrace>) \<in> set evs;
evs \<in> bankerb_gets \<rbrakk> \<Longrightarrow> A=A' \<and> Tk=Tk' \<and> B=B' \<and> X = X'"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)
apply (frule_tac [6] BK3_msg_in_parts_knows_Spy, simp_all)
txt\<open>BK2: it can't be a new key\<close>
apply blast
done
lemma unique_session_keys_Gets:
"\<lbrakk> Gets A
(Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, X\<rbrace>) \<in> set evs;
Gets A
(Crypt (shrK A) \<lbrace>Number Tk', Agent B', Key K, X'\<rbrace>) \<in> set evs;
A \<notin> bad; evs \<in> bankerb_gets \<rbrakk> \<Longrightarrow> Tk=Tk' \<and> B=B' \<and> X = X'"
apply (blast dest!: Kab_authentic unique_session_keys)
done
lemma Server_Unique:
"\<lbrakk> Says Server A
(Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, Ticket\<rbrace>) \<in> set evs;
evs \<in> bankerb_gets \<rbrakk> \<Longrightarrow>
Unique Says Server A (Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, Ticket\<rbrace>)
on evs"
apply (erule rev_mp, erule bankerb_gets.induct, simp_all add: Unique_def)
apply blast
done
subsection\<open>Non-temporal guarantees, explicitly relying on non-occurrence of
oops events - refined below by temporal guarantees\<close>
text\<open>Non temporal treatment of confidentiality\<close>
text\<open>Lemma: the session key sent in msg BK2 would be lost by oops
if the spy could see it!\<close>
lemma lemma_conf [rule_format (no_asm)]:
"\<lbrakk> A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says Server A
(Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K,
Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>\<rbrace>)
\<in> set evs \<longrightarrow>
Key K \<in> analz (knows Spy evs) \<longrightarrow> Notes Spy \<lbrace>Number Tk, Key K\<rbrace> \<in> set evs"
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Says_Server_message_form)
apply (frule_tac [6] Gets_Server_message_form [THEN disjE])
apply (simp_all (no_asm_simp) add: analz_insert_eq analz_insert_freshK pushes)
txt\<open>Fake\<close>
apply spy_analz
txt\<open>BK2\<close>
apply (blast intro: parts_insertI)
txt\<open>BK3\<close>
apply (case_tac "Aa \<in> bad")
prefer 2 apply (blast dest: Kab_authentic unique_session_keys)
apply (blast dest: Gets_imp_knows_Spy [THEN analz.Inj] Crypt_Spy_analz_bad elim!: MPair_analz)
txt\<open>Oops\<close>
apply (blast dest: unique_session_keys)
done
text\<open>Confidentiality for the Server: Spy does not see the keys sent in msg BK2
as long as they have not expired.\<close>
lemma Confidentiality_S:
"\<lbrakk> Says Server A
(Crypt K' \<lbrace>Number Tk, Agent B, Key K, Ticket\<rbrace>) \<in> set evs;
Notes Spy \<lbrace>Number Tk, Key K\<rbrace> \<notin> set evs;
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets
\<rbrakk> \<Longrightarrow> Key K \<notin> analz (knows Spy evs)"
apply (frule Says_Server_message_form, assumption)
apply (blast intro: lemma_conf)
done
text\<open>Confidentiality for Alice\<close>
lemma Confidentiality_A:
"\<lbrakk> Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, X\<rbrace> \<in> parts (knows Spy evs);
Notes Spy \<lbrace>Number Tk, Key K\<rbrace> \<notin> set evs;
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets
\<rbrakk> \<Longrightarrow> Key K \<notin> analz (knows Spy evs)"
by (blast dest!: Kab_authentic Confidentiality_S)
text\<open>Confidentiality for Bob\<close>
lemma Confidentiality_B:
"\<lbrakk> Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>
\<in> parts (knows Spy evs);
Notes Spy \<lbrace>Number Tk, Key K\<rbrace> \<notin> set evs;
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets
\<rbrakk> \<Longrightarrow> Key K \<notin> analz (knows Spy evs)"
by (blast dest!: ticket_authentic Confidentiality_S)
text\<open>Non temporal treatment of authentication\<close>
text\<open>Lemmas \<open>lemma_A\<close> and \<open>lemma_B\<close> in fact are common to both temporal and non-temporal treatments\<close>
lemma lemma_A [rule_format]:
"\<lbrakk> A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow>
Key K \<notin> analz (knows Spy evs) \<longrightarrow>
Says Server A (Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, X\<rbrace>)
\<in> set evs \<longrightarrow>
Crypt K \<lbrace>Agent A, Number Ta\<rbrace> \<in> parts (knows Spy evs) \<longrightarrow>
Says A B \<lbrace>X, Crypt K \<lbrace>Agent A, Number Ta\<rbrace>\<rbrace>
\<in> set evs"
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)
apply (frule_tac [6] Gets_Server_message_form)
apply (frule_tac [7] BK3_msg_in_parts_knows_Spy, analz_mono_contra)
apply (simp_all (no_asm_simp) add: all_conj_distrib)
txt\<open>Fake\<close>
apply blast
txt\<open>BK2\<close>
apply (force dest: Crypt_imp_invKey_keysFor)
txt\<open>BK3\<close>
apply (blast dest: Kab_authentic unique_session_keys)
done
lemma lemma_B [rule_format]:
"\<lbrakk> B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Key K \<notin> analz (knows Spy evs) \<longrightarrow>
Says Server A (Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, X\<rbrace>)
\<in> set evs \<longrightarrow>
Crypt K (Number Ta) \<in> parts (knows Spy evs) \<longrightarrow>
Says B A (Crypt K (Number Ta)) \<in> set evs"
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)
apply (frule_tac [6] Gets_Server_message_form)
apply (drule_tac [7] BK3_msg_in_parts_knows_Spy, analz_mono_contra)
apply (simp_all (no_asm_simp) add: all_conj_distrib)
txt\<open>Fake\<close>
apply blast
txt\<open>BK2\<close>
apply (force dest: Crypt_imp_invKey_keysFor)
txt\<open>BK4\<close>
apply (blast dest: ticket_authentic unique_session_keys
Gets_imp_knows_Spy [THEN analz.Inj] Crypt_Spy_analz_bad)
done
text\<open>The "r" suffix indicates theorems where the confidentiality assumptions are relaxed by the corresponding arguments.\<close>
text\<open>Authentication of A to B\<close>
lemma B_authenticates_A_r:
"\<lbrakk> Crypt K \<lbrace>Agent A, Number Ta\<rbrace> \<in> parts (knows Spy evs);
Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace> \<in> parts (knows Spy evs);
Notes Spy \<lbrace>Number Tk, Key K\<rbrace> \<notin> set evs;
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says A B \<lbrace>Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>,
Crypt K \<lbrace>Agent A, Number Ta\<rbrace>\<rbrace> \<in> set evs"
by (blast dest!: ticket_authentic
intro!: lemma_A
elim!: Confidentiality_S [THEN [2] rev_notE])
text\<open>Authentication of B to A\<close>
lemma A_authenticates_B_r:
"\<lbrakk> Crypt K (Number Ta) \<in> parts (knows Spy evs);
Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, X\<rbrace> \<in> parts (knows Spy evs);
Notes Spy \<lbrace>Number Tk, Key K\<rbrace> \<notin> set evs;
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says B A (Crypt K (Number Ta)) \<in> set evs"
by (blast dest!: Kab_authentic
intro!: lemma_B elim!: Confidentiality_S [THEN [2] rev_notE])
lemma B_authenticates_A:
"\<lbrakk> Crypt K \<lbrace>Agent A, Number Ta\<rbrace> \<in> parts (spies evs);
Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace> \<in> parts (spies evs);
Key K \<notin> analz (spies evs);
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says A B \<lbrace>Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>,
Crypt K \<lbrace>Agent A, Number Ta\<rbrace>\<rbrace> \<in> set evs"
apply (blast dest!: ticket_authentic intro!: lemma_A)
done
lemma A_authenticates_B:
"\<lbrakk> Crypt K (Number Ta) \<in> parts (spies evs);
Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, X\<rbrace> \<in> parts (spies evs);
Key K \<notin> analz (spies evs);
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says B A (Crypt K (Number Ta)) \<in> set evs"
apply (blast dest!: Kab_authentic intro!: lemma_B)
done
subsection\<open>Temporal guarantees, relying on a temporal check that insures that
no oops event occurred. These are available in the sense of goal availability\<close>
text\<open>Temporal treatment of confidentiality\<close>
text\<open>Lemma: the session key sent in msg BK2 would be EXPIRED
if the spy could see it!\<close>
lemma lemma_conf_temporal [rule_format (no_asm)]:
"\<lbrakk> A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says Server A
(Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K,
Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>\<rbrace>)
\<in> set evs \<longrightarrow>
Key K \<in> analz (knows Spy evs) \<longrightarrow> expiredK Tk evs"
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Says_Server_message_form)
apply (frule_tac [6] Gets_Server_message_form [THEN disjE])
apply (simp_all (no_asm_simp) add: less_SucI analz_insert_eq analz_insert_freshK pushes)
txt\<open>Fake\<close>
apply spy_analz
txt\<open>BK2\<close>
apply (blast intro: parts_insertI less_SucI)
txt\<open>BK3\<close>
apply (case_tac "Aa \<in> bad")
prefer 2 apply (blast dest: Kab_authentic unique_session_keys)
apply (blast dest: Gets_imp_knows_Spy [THEN analz.Inj] Crypt_Spy_analz_bad elim!: MPair_analz intro: less_SucI)
txt\<open>Oops: PROOF FAILS if unsafe intro below\<close>
apply (blast dest: unique_session_keys intro!: less_SucI)
done
text\<open>Confidentiality for the Server: Spy does not see the keys sent in msg BK2
as long as they have not expired.\<close>
lemma Confidentiality_S_temporal:
"\<lbrakk> Says Server A
(Crypt K' \<lbrace>Number T, Agent B, Key K, X\<rbrace>) \<in> set evs;
\<not> expiredK T evs;
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets
\<rbrakk> \<Longrightarrow> Key K \<notin> analz (knows Spy evs)"
apply (frule Says_Server_message_form, assumption)
apply (blast intro: lemma_conf_temporal)
done
text\<open>Confidentiality for Alice\<close>
lemma Confidentiality_A_temporal:
"\<lbrakk> Crypt (shrK A) \<lbrace>Number T, Agent B, Key K, X\<rbrace> \<in> parts (knows Spy evs);
\<not> expiredK T evs;
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets
\<rbrakk> \<Longrightarrow> Key K \<notin> analz (knows Spy evs)"
by (blast dest!: Kab_authentic Confidentiality_S_temporal)
text\<open>Confidentiality for Bob\<close>
lemma Confidentiality_B_temporal:
"\<lbrakk> Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>
\<in> parts (knows Spy evs);
\<not> expiredK Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets
\<rbrakk> \<Longrightarrow> Key K \<notin> analz (knows Spy evs)"
by (blast dest!: ticket_authentic Confidentiality_S_temporal)
text\<open>Temporal treatment of authentication\<close>
text\<open>Authentication of A to B\<close>
lemma B_authenticates_A_temporal:
"\<lbrakk> Crypt K \<lbrace>Agent A, Number Ta\<rbrace> \<in> parts (knows Spy evs);
Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>
\<in> parts (knows Spy evs);
\<not> expiredK Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says A B \<lbrace>Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>,
Crypt K \<lbrace>Agent A, Number Ta\<rbrace>\<rbrace> \<in> set evs"
by (blast dest!: ticket_authentic
intro!: lemma_A
elim!: Confidentiality_S_temporal [THEN [2] rev_notE])
text\<open>Authentication of B to A\<close>
lemma A_authenticates_B_temporal:
"\<lbrakk> Crypt K (Number Ta) \<in> parts (knows Spy evs);
Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, X\<rbrace>
\<in> parts (knows Spy evs);
\<not> expiredK Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says B A (Crypt K (Number Ta)) \<in> set evs"
by (blast dest!: Kab_authentic
intro!: lemma_B elim!: Confidentiality_S_temporal [THEN [2] rev_notE])
subsection\<open>Combined guarantees of key distribution and non-injective agreement on the session keys\<close>
lemma B_authenticates_and_keydist_to_A:
"\<lbrakk> Gets B \<lbrace>Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>,
Crypt K \<lbrace>Agent A, Number Ta\<rbrace>\<rbrace> \<in> set evs;
Key K \<notin> analz (spies evs);
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says A B \<lbrace>Crypt (shrK B) \<lbrace>Number Tk, Agent A, Key K\<rbrace>,
Crypt K \<lbrace>Agent A, Number Ta\<rbrace>\<rbrace> \<in> set evs
\<and> Key K \<in> analz (knows A evs)"
apply (blast dest: B_authenticates_A BK3_imp_Gets Gets_A_knows_K)
done
lemma A_authenticates_and_keydist_to_B:
"\<lbrakk> Gets A (Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, Ticket\<rbrace>) \<in> set evs;
Gets A (Crypt K (Number Ta)) \<in> set evs;
Key K \<notin> analz (spies evs);
A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets \<rbrakk>
\<Longrightarrow> Says B A (Crypt K (Number Ta)) \<in> set evs
\<and> Key K \<in> analz (knows B evs)"
apply (blast dest: A_authenticates_B BK4_imp_Gets Gets_B_knows_K)
done
end