(* Title: HOL/Library/AList.thy
Author: Norbert Schirmer, Tobias Nipkow, Martin Wildmoser, TU Muenchen
*)
section \<open>Implementation of Association Lists\<close>
theory AList
imports Main
begin
context
begin
text \<open>
The operations preserve distinctness of keys and
function \<^term>\<open>clearjunk\<close> distributes over them. Since
\<^term>\<open>clearjunk\<close> enforces distinctness of keys it can be used
to establish the invariant, e.g. for inductive proofs.
\<close>
subsection \<open>\<open>update\<close> and \<open>updates\<close>\<close>
qualified primrec update :: "'key \<Rightarrow> 'val \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
where
"update k v [] = [(k, v)]"
| "update k v (p # ps) = (if fst p = k then (k, v) # ps else p # update k v ps)"
lemma update_conv': "map_of (update k v al) = (map_of al)(k\<mapsto>v)"
by (induct al) (auto simp add: fun_eq_iff)
corollary update_conv: "map_of (update k v al) k' = ((map_of al)(k\<mapsto>v)) k'"
by (simp add: update_conv')
lemma dom_update: "fst ` set (update k v al) = {k} \<union> fst ` set al"
by (induct al) auto
lemma update_keys:
"map fst (update k v al) =
(if k \<in> set (map fst al) then map fst al else map fst al @ [k])"
by (induct al) simp_all
lemma distinct_update:
assumes "distinct (map fst al)"
shows "distinct (map fst (update k v al))"
using assms by (simp add: update_keys)
lemma update_filter:
"a \<noteq> k \<Longrightarrow> update k v [q\<leftarrow>ps. fst q \<noteq> a] = [q\<leftarrow>update k v ps. fst q \<noteq> a]"
by (induct ps) auto
lemma update_triv: "map_of al k = Some v \<Longrightarrow> update k v al = al"
by (induct al) auto
lemma update_nonempty [simp]: "update k v al \<noteq> []"
by (induct al) auto
lemma update_eqD: "update k v al = update k v' al' \<Longrightarrow> v = v'"
proof (induct al arbitrary: al')
case Nil
then show ?case
by (cases al') (auto split: if_split_asm)
next
case Cons
then show ?case
by (cases al') (auto split: if_split_asm)
qed
lemma update_last [simp]: "update k v (update k v' al) = update k v al"
by (induct al) auto
text \<open>Note that the lists are not necessarily the same:
\<^term>\<open>update k v (update k' v' []) = [(k', v'), (k, v)]\<close> and
\<^term>\<open>update k' v' (update k v []) = [(k, v), (k', v')]\<close>.\<close>
lemma update_swap:
"k \<noteq> k' \<Longrightarrow> map_of (update k v (update k' v' al)) = map_of (update k' v' (update k v al))"
by (simp add: update_conv' fun_eq_iff)
lemma update_Some_unfold:
"map_of (update k v al) x = Some y \<longleftrightarrow>
x = k \<and> v = y \<or> x \<noteq> k \<and> map_of al x = Some y"
by (simp add: update_conv' map_upd_Some_unfold)
lemma image_update [simp]: "x \<notin> A \<Longrightarrow> map_of (update x y al) ` A = map_of al ` A"
by (auto simp add: update_conv')
qualified definition updates ::
"'key list \<Rightarrow> 'val list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
where "updates ks vs = fold (case_prod update) (zip ks vs)"
lemma updates_simps [simp]:
"updates [] vs ps = ps"
"updates ks [] ps = ps"
"updates (k#ks) (v#vs) ps = updates ks vs (update k v ps)"
by (simp_all add: updates_def)
lemma updates_key_simp [simp]:
"updates (k # ks) vs ps =
(case vs of [] \<Rightarrow> ps | v # vs \<Rightarrow> updates ks vs (update k v ps))"
by (cases vs) simp_all
lemma updates_conv': "map_of (updates ks vs al) = (map_of al)(ks[\<mapsto>]vs)"
proof -
have "map_of \<circ> fold (case_prod update) (zip ks vs) =
fold (\<lambda>(k, v) f. f(k \<mapsto> v)) (zip ks vs) \<circ> map_of"
by (rule fold_commute) (auto simp add: fun_eq_iff update_conv')
then show ?thesis
by (auto simp add: updates_def fun_eq_iff map_upds_fold_map_upd foldl_conv_fold split_def)
qed
lemma updates_conv: "map_of (updates ks vs al) k = ((map_of al)(ks[\<mapsto>]vs)) k"
by (simp add: updates_conv')
lemma distinct_updates:
assumes "distinct (map fst al)"
shows "distinct (map fst (updates ks vs al))"
proof -
have "distinct (fold
(\<lambda>(k, v) al. if k \<in> set al then al else al @ [k])
(zip ks vs) (map fst al))"
by (rule fold_invariant [of "zip ks vs" "\<lambda>_. True"]) (auto intro: assms)
moreover have "map fst \<circ> fold (case_prod update) (zip ks vs) =
fold (\<lambda>(k, v) al. if k \<in> set al then al else al @ [k]) (zip ks vs) \<circ> map fst"
by (rule fold_commute) (simp add: update_keys split_def case_prod_beta comp_def)
ultimately show ?thesis
by (simp add: updates_def fun_eq_iff)
qed
lemma updates_append1[simp]: "size ks < size vs \<Longrightarrow>
updates (ks@[k]) vs al = update k (vs!size ks) (updates ks vs al)"
by (induct ks arbitrary: vs al) (auto split: list.splits)
lemma updates_list_update_drop[simp]:
"size ks \<le> i \<Longrightarrow> i < size vs \<Longrightarrow>
updates ks (vs[i:=v]) al = updates ks vs al"
by (induct ks arbitrary: al vs i) (auto split: list.splits nat.splits)
lemma update_updates_conv_if:
"map_of (updates xs ys (update x y al)) =
map_of
(if x \<in> set (take (length ys) xs)
then updates xs ys al
else (update x y (updates xs ys al)))"
by (simp add: updates_conv' update_conv' map_upd_upds_conv_if)
lemma updates_twist [simp]:
"k \<notin> set ks \<Longrightarrow>
map_of (updates ks vs (update k v al)) = map_of (update k v (updates ks vs al))"
by (simp add: updates_conv' update_conv')
lemma updates_apply_notin [simp]:
"k \<notin> set ks \<Longrightarrow> map_of (updates ks vs al) k = map_of al k"
by (simp add: updates_conv)
lemma updates_append_drop [simp]:
"size xs = size ys \<Longrightarrow> updates (xs @ zs) ys al = updates xs ys al"
by (induct xs arbitrary: ys al) (auto split: list.splits)
lemma updates_append2_drop [simp]:
"size xs = size ys \<Longrightarrow> updates xs (ys @ zs) al = updates xs ys al"
by (induct xs arbitrary: ys al) (auto split: list.splits)
subsection \<open>\<open>delete\<close>\<close>
qualified definition delete :: "'key \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
where delete_eq: "delete k = filter (\<lambda>(k', _). k \<noteq> k')"
lemma delete_simps [simp]:
"delete k [] = []"
"delete k (p # ps) = (if fst p = k then delete k ps else p # delete k ps)"
by (auto simp add: delete_eq)
lemma delete_conv': "map_of (delete k al) = (map_of al)(k := None)"
by (induct al) (auto simp add: fun_eq_iff)
corollary delete_conv: "map_of (delete k al) k' = ((map_of al)(k := None)) k'"
by (simp add: delete_conv')
lemma delete_keys: "map fst (delete k al) = removeAll k (map fst al)"
by (simp add: delete_eq removeAll_filter_not_eq filter_map split_def comp_def)
lemma distinct_delete:
assumes "distinct (map fst al)"
shows "distinct (map fst (delete k al))"
using assms by (simp add: delete_keys distinct_removeAll)
lemma delete_id [simp]: "k \<notin> fst ` set al \<Longrightarrow> delete k al = al"
by (auto simp add: image_iff delete_eq filter_id_conv)
lemma delete_idem: "delete k (delete k al) = delete k al"
by (simp add: delete_eq)
lemma map_of_delete [simp]: "k' \<noteq> k \<Longrightarrow> map_of (delete k al) k' = map_of al k'"
by (simp add: delete_conv')
lemma delete_notin_dom: "k \<notin> fst ` set (delete k al)"
by (auto simp add: delete_eq)
lemma dom_delete_subset: "fst ` set (delete k al) \<subseteq> fst ` set al"
by (auto simp add: delete_eq)
lemma delete_update_same: "delete k (update k v al) = delete k al"
by (induct al) simp_all
lemma delete_update: "k \<noteq> l \<Longrightarrow> delete l (update k v al) = update k v (delete l al)"
by (induct al) simp_all
lemma delete_twist: "delete x (delete y al) = delete y (delete x al)"
by (simp add: delete_eq conj_commute)
lemma length_delete_le: "length (delete k al) \<le> length al"
by (simp add: delete_eq)
subsection \<open>\<open>update_with_aux\<close> and \<open>delete_aux\<close>\<close>
qualified primrec update_with_aux ::
"'val \<Rightarrow> 'key \<Rightarrow> ('val \<Rightarrow> 'val) \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
where
"update_with_aux v k f [] = [(k, f v)]"
| "update_with_aux v k f (p # ps) =
(if (fst p = k) then (k, f (snd p)) # ps else p # update_with_aux v k f ps)"
text \<open>
The above \<^term>\<open>delete\<close> traverses all the list even if it has found the key.
This one does not have to keep going because is assumes the invariant that keys are distinct.
\<close>
qualified fun delete_aux :: "'key \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
where
"delete_aux k [] = []"
| "delete_aux k ((k', v) # xs) = (if k = k' then xs else (k', v) # delete_aux k xs)"
lemma map_of_update_with_aux':
"map_of (update_with_aux v k f ps) k' =
((map_of ps)(k \<mapsto> (case map_of ps k of None \<Rightarrow> f v | Some v \<Rightarrow> f v))) k'"
by (induct ps) auto
lemma map_of_update_with_aux:
"map_of (update_with_aux v k f ps) =
(map_of ps)(k \<mapsto> (case map_of ps k of None \<Rightarrow> f v | Some v \<Rightarrow> f v))"
by (simp add: fun_eq_iff map_of_update_with_aux')
lemma dom_update_with_aux: "fst ` set (update_with_aux v k f ps) = {k} \<union> fst ` set ps"
by (induct ps) auto
lemma distinct_update_with_aux [simp]:
"distinct (map fst (update_with_aux v k f ps)) = distinct (map fst ps)"
by (induct ps) (auto simp add: dom_update_with_aux)
lemma set_update_with_aux:
"distinct (map fst xs) \<Longrightarrow>
set (update_with_aux v k f xs) =
(set xs - {k} \<times> UNIV \<union> {(k, f (case map_of xs k of None \<Rightarrow> v | Some v \<Rightarrow> v))})"
by (induct xs) (auto intro: rev_image_eqI)
lemma set_delete_aux: "distinct (map fst xs) \<Longrightarrow> set (delete_aux k xs) = set xs - {k} \<times> UNIV"
apply (induct xs)
apply simp_all
apply clarsimp
apply (fastforce intro: rev_image_eqI)
done
lemma dom_delete_aux: "distinct (map fst ps) \<Longrightarrow> fst ` set (delete_aux k ps) = fst ` set ps - {k}"
by (auto simp add: set_delete_aux)
lemma distinct_delete_aux [simp]: "distinct (map fst ps) \<Longrightarrow> distinct (map fst (delete_aux k ps))"
proof (induct ps)
case Nil
then show ?case by simp
next
case (Cons a ps)
obtain k' v where a: "a = (k', v)"
by (cases a)
show ?case
proof (cases "k' = k")
case True
with Cons a show ?thesis by simp
next
case False
with Cons a have "k' \<notin> fst ` set ps" "distinct (map fst ps)"
by simp_all
with False a have "k' \<notin> fst ` set (delete_aux k ps)"
by (auto dest!: dom_delete_aux[where k=k])
with Cons a show ?thesis
by simp
qed
qed
lemma map_of_delete_aux':
"distinct (map fst xs) \<Longrightarrow> map_of (delete_aux k xs) = (map_of xs)(k := None)"
apply (induct xs)
apply (fastforce simp add: map_of_eq_None_iff fun_upd_twist)
apply (auto intro!: ext)
apply (simp add: map_of_eq_None_iff)
done
lemma map_of_delete_aux:
"distinct (map fst xs) \<Longrightarrow> map_of (delete_aux k xs) k' = ((map_of xs)(k := None)) k'"
by (simp add: map_of_delete_aux')
lemma delete_aux_eq_Nil_conv: "delete_aux k ts = [] \<longleftrightarrow> ts = [] \<or> (\<exists>v. ts = [(k, v)])"
by (cases ts) (auto split: if_split_asm)
subsection \<open>\<open>restrict\<close>\<close>
qualified definition restrict :: "'key set \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
where restrict_eq: "restrict A = filter (\<lambda>(k, v). k \<in> A)"
lemma restr_simps [simp]:
"restrict A [] = []"
"restrict A (p#ps) = (if fst p \<in> A then p # restrict A ps else restrict A ps)"
by (auto simp add: restrict_eq)
lemma restr_conv': "map_of (restrict A al) = ((map_of al)|` A)"
proof
show "map_of (restrict A al) k = ((map_of al)|` A) k" for k
apply (induct al)
apply simp
apply (cases "k \<in> A")
apply auto
done
qed
corollary restr_conv: "map_of (restrict A al) k = ((map_of al)|` A) k"
by (simp add: restr_conv')
lemma distinct_restr: "distinct (map fst al) \<Longrightarrow> distinct (map fst (restrict A al))"
by (induct al) (auto simp add: restrict_eq)
lemma restr_empty [simp]:
"restrict {} al = []"
"restrict A [] = []"
by (induct al) (auto simp add: restrict_eq)
lemma restr_in [simp]: "x \<in> A \<Longrightarrow> map_of (restrict A al) x = map_of al x"
by (simp add: restr_conv')
lemma restr_out [simp]: "x \<notin> A \<Longrightarrow> map_of (restrict A al) x = None"
by (simp add: restr_conv')
lemma dom_restr [simp]: "fst ` set (restrict A al) = fst ` set al \<inter> A"
by (induct al) (auto simp add: restrict_eq)
lemma restr_upd_same [simp]: "restrict (-{x}) (update x y al) = restrict (-{x}) al"
by (induct al) (auto simp add: restrict_eq)
lemma restr_restr [simp]: "restrict A (restrict B al) = restrict (A\<inter>B) al"
by (induct al) (auto simp add: restrict_eq)
lemma restr_update[simp]:
"map_of (restrict D (update x y al)) =
map_of ((if x \<in> D then (update x y (restrict (D-{x}) al)) else restrict D al))"
by (simp add: restr_conv' update_conv')
lemma restr_delete [simp]:
"delete x (restrict D al) = (if x \<in> D then restrict (D - {x}) al else restrict D al)"
apply (simp add: delete_eq restrict_eq)
apply (auto simp add: split_def)
proof -
have "y \<noteq> x \<longleftrightarrow> x \<noteq> y" for y
by auto
then show "[p \<leftarrow> al. fst p \<in> D \<and> x \<noteq> fst p] = [p \<leftarrow> al. fst p \<in> D \<and> fst p \<noteq> x]"
by simp
assume "x \<notin> D"
then have "y \<in> D \<longleftrightarrow> y \<in> D \<and> x \<noteq> y" for y
by auto
then show "[p \<leftarrow> al . fst p \<in> D \<and> x \<noteq> fst p] = [p \<leftarrow> al . fst p \<in> D]"
by simp
qed
lemma update_restr:
"map_of (update x y (restrict D al)) = map_of (update x y (restrict (D - {x}) al))"
by (simp add: update_conv' restr_conv') (rule fun_upd_restrict)
lemma update_restr_conv [simp]:
"x \<in> D \<Longrightarrow>
map_of (update x y (restrict D al)) = map_of (update x y (restrict (D - {x}) al))"
by (simp add: update_conv' restr_conv')
lemma restr_updates [simp]:
"length xs = length ys \<Longrightarrow> set xs \<subseteq> D \<Longrightarrow>
map_of (restrict D (updates xs ys al)) =
map_of (updates xs ys (restrict (D - set xs) al))"
by (simp add: updates_conv' restr_conv')
lemma restr_delete_twist: "(restrict A (delete a ps)) = delete a (restrict A ps)"
by (induct ps) auto
subsection \<open>\<open>clearjunk\<close>\<close>
qualified function clearjunk :: "('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
where
"clearjunk [] = []"
| "clearjunk (p#ps) = p # clearjunk (delete (fst p) ps)"
by pat_completeness auto
termination
by (relation "measure length") (simp_all add: less_Suc_eq_le length_delete_le)
lemma map_of_clearjunk: "map_of (clearjunk al) = map_of al"
by (induct al rule: clearjunk.induct) (simp_all add: fun_eq_iff)
lemma clearjunk_keys_set: "set (map fst (clearjunk al)) = set (map fst al)"
by (induct al rule: clearjunk.induct) (simp_all add: delete_keys)
lemma dom_clearjunk: "fst ` set (clearjunk al) = fst ` set al"
using clearjunk_keys_set by simp
lemma distinct_clearjunk [simp]: "distinct (map fst (clearjunk al))"
by (induct al rule: clearjunk.induct) (simp_all del: set_map add: clearjunk_keys_set delete_keys)
lemma ran_clearjunk: "ran (map_of (clearjunk al)) = ran (map_of al)"
by (simp add: map_of_clearjunk)
lemma ran_map_of: "ran (map_of al) = snd ` set (clearjunk al)"
proof -
have "ran (map_of al) = ran (map_of (clearjunk al))"
by (simp add: ran_clearjunk)
also have "\<dots> = snd ` set (clearjunk al)"
by (simp add: ran_distinct)
finally show ?thesis .
qed
lemma clearjunk_update: "clearjunk (update k v al) = update k v (clearjunk al)"
by (induct al rule: clearjunk.induct) (simp_all add: delete_update)
lemma clearjunk_updates: "clearjunk (updates ks vs al) = updates ks vs (clearjunk al)"
proof -
have "clearjunk \<circ> fold (case_prod update) (zip ks vs) =
fold (case_prod update) (zip ks vs) \<circ> clearjunk"
by (rule fold_commute) (simp add: clearjunk_update case_prod_beta o_def)
then show ?thesis
by (simp add: updates_def fun_eq_iff)
qed
lemma clearjunk_delete: "clearjunk (delete x al) = delete x (clearjunk al)"
by (induct al rule: clearjunk.induct) (auto simp add: delete_idem delete_twist)
lemma clearjunk_restrict: "clearjunk (restrict A al) = restrict A (clearjunk al)"
by (induct al rule: clearjunk.induct) (auto simp add: restr_delete_twist)
lemma distinct_clearjunk_id [simp]: "distinct (map fst al) \<Longrightarrow> clearjunk al = al"
by (induct al rule: clearjunk.induct) auto
lemma clearjunk_idem: "clearjunk (clearjunk al) = clearjunk al"
by simp
lemma length_clearjunk: "length (clearjunk al) \<le> length al"
proof (induct al rule: clearjunk.induct [case_names Nil Cons])
case Nil
then show ?case by simp
next
case (Cons kv al)
moreover have "length (delete (fst kv) al) \<le> length al"
by (fact length_delete_le)
ultimately have "length (clearjunk (delete (fst kv) al)) \<le> length al"
by (rule order_trans)
then show ?case
by simp
qed
lemma delete_map:
assumes "\<And>kv. fst (f kv) = fst kv"
shows "delete k (map f ps) = map f (delete k ps)"
by (simp add: delete_eq filter_map comp_def split_def assms)
lemma clearjunk_map:
assumes "\<And>kv. fst (f kv) = fst kv"
shows "clearjunk (map f ps) = map f (clearjunk ps)"
by (induct ps rule: clearjunk.induct [case_names Nil Cons])
(simp_all add: clearjunk_delete delete_map assms)
subsection \<open>\<open>map_ran\<close>\<close>
definition map_ran :: "('key \<Rightarrow> 'val \<Rightarrow> 'val) \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
where "map_ran f = map (\<lambda>(k, v). (k, f k v))"
lemma map_ran_simps [simp]:
"map_ran f [] = []"
"map_ran f ((k, v) # ps) = (k, f k v) # map_ran f ps"
by (simp_all add: map_ran_def)
lemma dom_map_ran: "fst ` set (map_ran f al) = fst ` set al"
by (simp add: map_ran_def image_image split_def)
lemma map_ran_conv: "map_of (map_ran f al) k = map_option (f k) (map_of al k)"
by (induct al) auto
lemma distinct_map_ran: "distinct (map fst al) \<Longrightarrow> distinct (map fst (map_ran f al))"
by (simp add: map_ran_def split_def comp_def)
lemma map_ran_filter: "map_ran f [p\<leftarrow>ps. fst p \<noteq> a] = [p\<leftarrow>map_ran f ps. fst p \<noteq> a]"
by (simp add: map_ran_def filter_map split_def comp_def)
lemma clearjunk_map_ran: "clearjunk (map_ran f al) = map_ran f (clearjunk al)"
by (simp add: map_ran_def split_def clearjunk_map)
subsection \<open>\<open>merge\<close>\<close>
qualified definition merge :: "('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
where "merge qs ps = foldr (\<lambda>(k, v). update k v) ps qs"
lemma merge_simps [simp]:
"merge qs [] = qs"
"merge qs (p#ps) = update (fst p) (snd p) (merge qs ps)"
by (simp_all add: merge_def split_def)
lemma merge_updates: "merge qs ps = updates (rev (map fst ps)) (rev (map snd ps)) qs"
by (simp add: merge_def updates_def foldr_conv_fold zip_rev zip_map_fst_snd)
lemma dom_merge: "fst ` set (merge xs ys) = fst ` set xs \<union> fst ` set ys"
by (induct ys arbitrary: xs) (auto simp add: dom_update)
lemma distinct_merge: "distinct (map fst xs) \<Longrightarrow> distinct (map fst (merge xs ys))"
by (simp add: merge_updates distinct_updates)
lemma clearjunk_merge: "clearjunk (merge xs ys) = merge (clearjunk xs) ys"
by (simp add: merge_updates clearjunk_updates)
lemma merge_conv': "map_of (merge xs ys) = map_of xs ++ map_of ys"
proof -
have "map_of \<circ> fold (case_prod update) (rev ys) =
fold (\<lambda>(k, v) m. m(k \<mapsto> v)) (rev ys) \<circ> map_of"
by (rule fold_commute) (simp add: update_conv' case_prod_beta split_def fun_eq_iff)
then show ?thesis
by (simp add: merge_def map_add_map_of_foldr foldr_conv_fold fun_eq_iff)
qed
corollary merge_conv: "map_of (merge xs ys) k = (map_of xs ++ map_of ys) k"
by (simp add: merge_conv')
lemma merge_empty: "map_of (merge [] ys) = map_of ys"
by (simp add: merge_conv')
lemma merge_assoc [simp]: "map_of (merge m1 (merge m2 m3)) = map_of (merge (merge m1 m2) m3)"
by (simp add: merge_conv')
lemma merge_Some_iff:
"map_of (merge m n) k = Some x \<longleftrightarrow>
map_of n k = Some x \<or> map_of n k = None \<and> map_of m k = Some x"
by (simp add: merge_conv' map_add_Some_iff)
lemmas merge_SomeD [dest!] = merge_Some_iff [THEN iffD1]
lemma merge_find_right [simp]: "map_of n k = Some v \<Longrightarrow> map_of (merge m n) k = Some v"
by (simp add: merge_conv')
lemma merge_None [iff]: "(map_of (merge m n) k = None) = (map_of n k = None \<and> map_of m k = None)"
by (simp add: merge_conv')
lemma merge_upd [simp]: "map_of (merge m (update k v n)) = map_of (update k v (merge m n))"
by (simp add: update_conv' merge_conv')
lemma merge_updatess [simp]:
"map_of (merge m (updates xs ys n)) = map_of (updates xs ys (merge m n))"
by (simp add: updates_conv' merge_conv')
lemma merge_append: "map_of (xs @ ys) = map_of (merge ys xs)"
by (simp add: merge_conv')
subsection \<open>\<open>compose\<close>\<close>
qualified function compose :: "('key \<times> 'a) list \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('key \<times> 'b) list"
where
"compose [] ys = []"
| "compose (x # xs) ys =
(case map_of ys (snd x) of
None \<Rightarrow> compose (delete (fst x) xs) ys
| Some v \<Rightarrow> (fst x, v) # compose xs ys)"
by pat_completeness auto
termination
by (relation "measure (length \<circ> fst)") (simp_all add: less_Suc_eq_le length_delete_le)
lemma compose_first_None [simp]: "map_of xs k = None \<Longrightarrow> map_of (compose xs ys) k = None"
by (induct xs ys rule: compose.induct) (auto split: option.splits if_split_asm)
lemma compose_conv: "map_of (compose xs ys) k = (map_of ys \<circ>\<^sub>m map_of xs) k"
proof (induct xs ys rule: compose.induct)
case 1
then show ?case by simp
next
case (2 x xs ys)
show ?case
proof (cases "map_of ys (snd x)")
case None
with 2 have hyp: "map_of (compose (delete (fst x) xs) ys) k =
(map_of ys \<circ>\<^sub>m map_of (delete (fst x) xs)) k"
by simp
show ?thesis
proof (cases "fst x = k")
case True
from True delete_notin_dom [of k xs]
have "map_of (delete (fst x) xs) k = None"
by (simp add: map_of_eq_None_iff)
with hyp show ?thesis
using True None
by simp
next
case False
from False have "map_of (delete (fst x) xs) k = map_of xs k"
by simp
with hyp show ?thesis
using False None by (simp add: map_comp_def)
qed
next
case (Some v)
with 2
have "map_of (compose xs ys) k = (map_of ys \<circ>\<^sub>m map_of xs) k"
by simp
with Some show ?thesis
by (auto simp add: map_comp_def)
qed
qed
lemma compose_conv': "map_of (compose xs ys) = (map_of ys \<circ>\<^sub>m map_of xs)"
by (rule ext) (rule compose_conv)
lemma compose_first_Some [simp]: "map_of xs k = Some v \<Longrightarrow> map_of (compose xs ys) k = map_of ys v"
by (simp add: compose_conv)
lemma dom_compose: "fst ` set (compose xs ys) \<subseteq> fst ` set xs"
proof (induct xs ys rule: compose.induct)
case 1
then show ?case by simp
next
case (2 x xs ys)
show ?case
proof (cases "map_of ys (snd x)")
case None
with "2.hyps" have "fst ` set (compose (delete (fst x) xs) ys) \<subseteq> fst ` set (delete (fst x) xs)"
by simp
also have "\<dots> \<subseteq> fst ` set xs"
by (rule dom_delete_subset)
finally show ?thesis
using None by auto
next
case (Some v)
with "2.hyps" have "fst ` set (compose xs ys) \<subseteq> fst ` set xs"
by simp
with Some show ?thesis
by auto
qed
qed
lemma distinct_compose:
assumes "distinct (map fst xs)"
shows "distinct (map fst (compose xs ys))"
using assms
proof (induct xs ys rule: compose.induct)
case 1
then show ?case by simp
next
case (2 x xs ys)
show ?case
proof (cases "map_of ys (snd x)")
case None
with 2 show ?thesis by simp
next
case (Some v)
with 2 dom_compose [of xs ys] show ?thesis
by auto
qed
qed
lemma compose_delete_twist: "compose (delete k xs) ys = delete k (compose xs ys)"
proof (induct xs ys rule: compose.induct)
case 1
then show ?case by simp
next
case (2 x xs ys)
show ?case
proof (cases "map_of ys (snd x)")
case None
with 2 have hyp: "compose (delete k (delete (fst x) xs)) ys =
delete k (compose (delete (fst x) xs) ys)"
by simp
show ?thesis
proof (cases "fst x = k")
case True
with None hyp show ?thesis
by (simp add: delete_idem)
next
case False
from None False hyp show ?thesis
by (simp add: delete_twist)
qed
next
case (Some v)
with 2 have hyp: "compose (delete k xs) ys = delete k (compose xs ys)"
by simp
with Some show ?thesis
by simp
qed
qed
lemma compose_clearjunk: "compose xs (clearjunk ys) = compose xs ys"
by (induct xs ys rule: compose.induct)
(auto simp add: map_of_clearjunk split: option.splits)
lemma clearjunk_compose: "clearjunk (compose xs ys) = compose (clearjunk xs) ys"
by (induct xs rule: clearjunk.induct)
(auto split: option.splits simp add: clearjunk_delete delete_idem compose_delete_twist)
lemma compose_empty [simp]: "compose xs [] = []"
by (induct xs) (auto simp add: compose_delete_twist)
lemma compose_Some_iff:
"(map_of (compose xs ys) k = Some v) \<longleftrightarrow>
(\<exists>k'. map_of xs k = Some k' \<and> map_of ys k' = Some v)"
by (simp add: compose_conv map_comp_Some_iff)
lemma map_comp_None_iff:
"map_of (compose xs ys) k = None \<longleftrightarrow>
(map_of xs k = None \<or> (\<exists>k'. map_of xs k = Some k' \<and> map_of ys k' = None))"
by (simp add: compose_conv map_comp_None_iff)
subsection \<open>\<open>map_entry\<close>\<close>
qualified fun map_entry :: "'key \<Rightarrow> ('val \<Rightarrow> 'val) \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
where
"map_entry k f [] = []"
| "map_entry k f (p # ps) =
(if fst p = k then (k, f (snd p)) # ps else p # map_entry k f ps)"
lemma map_of_map_entry:
"map_of (map_entry k f xs) =
(map_of xs)(k := case map_of xs k of None \<Rightarrow> None | Some v' \<Rightarrow> Some (f v'))"
by (induct xs) auto
lemma dom_map_entry: "fst ` set (map_entry k f xs) = fst ` set xs"
by (induct xs) auto
lemma distinct_map_entry:
assumes "distinct (map fst xs)"
shows "distinct (map fst (map_entry k f xs))"
using assms by (induct xs) (auto simp add: dom_map_entry)
subsection \<open>\<open>map_default\<close>\<close>
fun map_default :: "'key \<Rightarrow> 'val \<Rightarrow> ('val \<Rightarrow> 'val) \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
where
"map_default k v f [] = [(k, v)]"
| "map_default k v f (p # ps) =
(if fst p = k then (k, f (snd p)) # ps else p # map_default k v f ps)"
lemma map_of_map_default:
"map_of (map_default k v f xs) =
(map_of xs)(k := case map_of xs k of None \<Rightarrow> Some v | Some v' \<Rightarrow> Some (f v'))"
by (induct xs) auto
lemma dom_map_default: "fst ` set (map_default k v f xs) = insert k (fst ` set xs)"
by (induct xs) auto
lemma distinct_map_default:
assumes "distinct (map fst xs)"
shows "distinct (map fst (map_default k v f xs))"
using assms by (induct xs) (auto simp add: dom_map_default)
end
end