Eliminated ccc1. Moved ID,oo into Cfun.
(*  Title: 	HOLCF/porder.thy
    ID:         $Id$
    Author: 	Franz Regensburger
    Copyright   1993 Technische Universitaet Muenchen
Conservative extension of theory Porder0 by constant definitions 
*)
Porder = Porder0 +
consts	
	"<|"	::	"['a set,'a::po] => bool"	(infixl 55)
	"<<|"	::	"['a set,'a::po] => bool"	(infixl 55)
	lub	::	"'a set => 'a::po"
	is_tord	::	"'a::po set => bool"
	is_chain ::	"(nat=>'a::po) => bool"
	max_in_chain :: "[nat,nat=>'a::po]=>bool"
	finite_chain :: "(nat=>'a::po)=>bool"
rules
(* class definitions *)
is_ub		"S  <| x == ! y.y:S --> y<<x"
is_lub		"S <<| x == S <| x & (! u. S <| u  --> x << u)"
lub		"lub(S) = (@x. S <<| x)"
(* Arbitrary chains are total orders    *)                  
is_tord		"is_tord(S) == ! x y. x:S & y:S --> (x<<y | y<<x)"
(* Here we use countable chains and I prefer to code them as functions! *)
is_chain	"is_chain(F) == (! i.F(i) << F(Suc(i)))"
(* finite chains, needed for monotony of continouous functions *)
max_in_chain_def "max_in_chain(i,C) == ! j. i <= j --> C(i) = C(j)" 
finite_chain_def "finite_chain(C) == is_chain(C) & (? i. max_in_chain(i,C))"
end