src/FOLP/ifolp.thy
author wenzelm
Fri, 16 Apr 1999 14:48:16 +0200
changeset 6437 9bdfe07ba8e9
parent 283 76caebd18756
permissions -rw-r--r--
'HOL/inductive' theory data;

IFOLP = Pure +

classes term < logic

default term

types
  p
  o

arities
  p,o :: logic

consts	
      (*** Judgements ***)
 "@Proof"   	::   "[p,o]=>prop"	("(_ /: _)" [10,10] 5)
 Proof  	::   "[o,p]=>prop"
 EqProof        ::   "[p,p,o]=>prop"    ("(3_ /= _ :/ _)" [10,10,10] 5)
        
      (*** Logical Connectives -- Type Formers ***)
 "="		::	"['a,'a] => o"	(infixl 50)
 True,False	::	"o"
 "Not"		::	"o => o"	("~ _" [40] 40)
 "&"		::	"[o,o] => o"	(infixr 35)
 "|"		::	"[o,o] => o"	(infixr 30)
 "-->"		::	"[o,o] => o"	(infixr 25)
 "<->"		::	"[o,o] => o"	(infixr 25)
      (*Quantifiers*)
 All		::	"('a => o) => o"	(binder "ALL " 10)
 Ex		::	"('a => o) => o"	(binder "EX " 10)
 Ex1		::	"('a => o) => o"	(binder "EX! " 10)
      (*Rewriting gadgets*)
 NORM		::	"o => o"
 norm		::	"'a => 'a"

      (*** Proof Term Formers ***)
 tt		:: "p"
 contr		:: "p=>p"
 fst,snd	:: "p=>p"
 pair		:: "[p,p]=>p"		("(1<_,/_>)")
 split		:: "[p, [p,p]=>p] =>p"
 inl,inr	:: "p=>p"
 when		:: "[p, p=>p, p=>p]=>p"
 lambda		:: "(p => p) => p"	(binder "lam " 20)
 "`"		:: "[p,p]=>p"		(infixl 60)
 alll           :: "['a=>p]=>p"         (binder "all " 15)
 "^"            :: "[p,'a]=>p"          (infixl 50)
 exists		:: "['a,p]=>p"		("(1[_,/_])")
 xsplit         :: "[p,['a,p]=>p]=>p"
 ideq           :: "'a=>p"
 idpeel         :: "[p,'a=>p]=>p"
 nrm, NRM       :: "p"

rules

(**** Propositional logic ****)

(*Equality*)
(* Like Intensional Equality in MLTT - but proofs distinct from terms *)

ieqI	  "ideq(a) : a=a"
ieqE      "[| p : a=b;  !!x.f(x) : P(x,x) |] ==> idpeel(p,f) : P(a,b)"

(* Truth and Falsity *)

TrueI     "tt : True"
FalseE    "a:False ==> contr(a):P"

(* Conjunction *)

conjI     "[| a:P;  b:Q |] ==> <a,b> : P&Q"
conjunct1 "p:P&Q ==> fst(p):P"
conjunct2 "p:P&Q ==> snd(p):Q"

(* Disjunction *)

disjI1    "a:P ==> inl(a):P|Q"
disjI2    "b:Q ==> inr(b):P|Q"
disjE     "[| a:P|Q;  !!x.x:P ==> f(x):R;  !!x.x:Q ==> g(x):R \
\          |] ==> when(a,f,g):R"

(* Implication *)

impI      "(!!x.x:P ==> f(x):Q) ==> lam x.f(x):P-->Q"
mp        "[| f:P-->Q;  a:P |] ==> f`a:Q"

(*Quantifiers*)

allI	  "(!!x. f(x) : P(x)) ==> all x.f(x) : ALL x.P(x)"
spec	  "(f:ALL x.P(x)) ==> f^x : P(x)"

exI	  "p : P(x) ==> [x,p] : EX x.P(x)"
exE	  "[| p: EX x.P(x);  !!x u. u:P(x) ==> f(x,u) : R |] ==> xsplit(p,f):R"

(**** Equality between proofs ****)

prefl     "a : P ==> a = a : P"
psym      "a = b : P ==> b = a : P"
ptrans    "[| a = b : P;  b = c : P |] ==> a = c : P"

idpeelB   "[| !!x.f(x) : P(x,x) |] ==> idpeel(ideq(a),f) = f(a) : P(a,a)"

fstB      "a:P ==> fst(<a,b>) = a : P"
sndB      "b:Q ==> snd(<a,b>) = b : Q"
pairEC    "p:P&Q ==> p = <fst(p),snd(p)> : P&Q"

whenBinl  "[| a:P;  !!x.x:P ==> f(x) : Q |] ==> when(inl(a),f,g) = f(a) : Q"
whenBinr  "[| b:P;  !!x.x:P ==> g(x) : Q |] ==> when(inr(b),f,g) = g(b) : Q"
plusEC    "a:P|Q ==> when(a,%x.inl(x),%y.inr(y)) = p : P|Q"

applyB     "[| a:P;  !!x.x:P ==> b(x) : Q |] ==> (lam x.b(x)) ` a = b(a) : Q"
funEC      "f:P ==> f = lam x.f`x : P"

specB      "[| !!x.f(x) : P(x) |] ==> (all x.f(x)) ^ a = f(a) : P(a)"


(**** Definitions ****)

not_def 	     "~P == P-->False"
iff_def         "P<->Q == (P-->Q) & (Q-->P)"

(*Unique existence*)
ex1_def   "EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)"

(*Rewriting -- special constants to flag normalized terms and formulae*)
norm_eq	"nrm : norm(x) = x"
NORM_iff	"NRM : NORM(P) <-> P"

end

ML

(*show_proofs:=true displays the proof terms -- they are ENORMOUS*)
val show_proofs = ref false;

fun proof_tr [p,P] = Const("Proof",dummyT) $ P $ p;

fun proof_tr' [P,p] = 
    if !show_proofs then Const("@Proof",dummyT) $ p $ P 
    else P  (*this case discards the proof term*);

val  parse_translation = [("@Proof", proof_tr)];
val print_translation  = [("Proof", proof_tr')];