author | wenzelm |
Thu, 22 Apr 2010 22:01:06 +0200 | |
changeset 36277 | 9be4ab2acc13 |
child 41893 | dde7df1176b7 |
permissions | -rw-r--r-- |
theory Class2 imports Class1 begin text {* Reduction *} lemma fin_not_Cut: assumes a: "fin M x" shows "\<not>(\<exists>a M' x N'. M = Cut <a>.M' (x).N')" using a by (induct) (auto) lemma fresh_not_fin: assumes a: "x\<sharp>M" shows "\<not>fin M x" proof - have "fin M x \<Longrightarrow> x\<sharp>M \<Longrightarrow> False" by (induct rule: fin.induct) (auto simp add: abs_fresh fresh_atm) with a show "\<not>fin M x" by blast qed lemma fresh_not_fic: assumes a: "a\<sharp>M" shows "\<not>fic M a" proof - have "fic M a \<Longrightarrow> a\<sharp>M \<Longrightarrow> False" by (induct rule: fic.induct) (auto simp add: abs_fresh fresh_atm) with a show "\<not>fic M a" by blast qed lemma c_redu_subst1: assumes a: "M \<longrightarrow>\<^isub>c M'" "c\<sharp>M" "y\<sharp>P" shows "M{y:=<c>.P} \<longrightarrow>\<^isub>c M'{y:=<c>.P}" using a proof(nominal_induct avoiding: y c P rule: c_redu.strong_induct) case (left M a N x) then show ?case apply - apply(simp) apply(rule conjI) apply(force) apply(auto) apply(subgoal_tac "M{a:=(x).N}{y:=<c>.P} = M{y:=<c>.P}{a:=(x).(N{y:=<c>.P})}")(*A*) apply(simp) apply(rule c_redu.intros) apply(rule not_fic_subst1) apply(simp) apply(simp add: subst_fresh) apply(simp add: subst_fresh) apply(simp add: abs_fresh fresh_atm) apply(rule subst_subst2) apply(simp add: fresh_prod fresh_atm) apply(simp add: fresh_prod fresh_atm) apply(simp add: fresh_prod fresh_atm) apply(simp) done next case (right N x a M) then show ?case apply - apply(simp) apply(rule conjI) (* case M = Ax y a *) apply(rule impI) apply(subgoal_tac "N{x:=<a>.Ax y a}{y:=<c>.P} = N{y:=<c>.P}{x:=<c>.P}") apply(simp) apply(rule c_redu.right) apply(rule not_fin_subst2) apply(simp) apply(rule subst_fresh) apply(simp add: abs_fresh) apply(simp add: abs_fresh) apply(rule sym) apply(rule interesting_subst1') apply(simp add: fresh_atm) apply(simp) apply(simp) (* case M \<noteq> Ax y a*) apply(rule impI) apply(subgoal_tac "N{x:=<a>.M}{y:=<c>.P} = N{y:=<c>.P}{x:=<a>.(M{y:=<c>.P})}") apply(simp) apply(rule c_redu.right) apply(rule not_fin_subst2) apply(simp) apply(simp add: subst_fresh) apply(simp add: subst_fresh) apply(simp add: abs_fresh fresh_atm) apply(rule subst_subst3) apply(simp_all add: fresh_atm fresh_prod) done qed lemma c_redu_subst2: assumes a: "M \<longrightarrow>\<^isub>c M'" "c\<sharp>P" "y\<sharp>M" shows "M{c:=(y).P} \<longrightarrow>\<^isub>c M'{c:=(y).P}" using a proof(nominal_induct avoiding: y c P rule: c_redu.strong_induct) case (right N x a M) then show ?case apply - apply(simp) apply(rule conjI) apply(force) apply(auto) apply(subgoal_tac "N{x:=<a>.M}{c:=(y).P} = N{c:=(y).P}{x:=<a>.(M{c:=(y).P})}")(*A*) apply(simp) apply(rule c_redu.intros) apply(rule not_fin_subst1) apply(simp) apply(simp add: subst_fresh) apply(simp add: subst_fresh) apply(simp add: abs_fresh fresh_atm) apply(rule subst_subst1) apply(simp add: fresh_prod fresh_atm) apply(simp add: fresh_prod fresh_atm) apply(simp add: fresh_prod fresh_atm) apply(simp) done next case (left M a N x) then show ?case apply - apply(simp) apply(rule conjI) (* case N = Ax x c *) apply(rule impI) apply(subgoal_tac "M{a:=(x).Ax x c}{c:=(y).P} = M{c:=(y).P}{a:=(y).P}") apply(simp) apply(rule c_redu.left) apply(rule not_fic_subst2) apply(simp) apply(simp) apply(rule subst_fresh) apply(simp add: abs_fresh) apply(rule sym) apply(rule interesting_subst2') apply(simp add: fresh_atm) apply(simp) apply(simp) (* case M \<noteq> Ax y a*) apply(rule impI) apply(subgoal_tac "M{a:=(x).N}{c:=(y).P} = M{c:=(y).P}{a:=(x).(N{c:=(y).P})}") apply(simp) apply(rule c_redu.left) apply(rule not_fic_subst2) apply(simp) apply(simp add: subst_fresh) apply(simp add: subst_fresh) apply(simp add: abs_fresh fresh_atm) apply(rule subst_subst4) apply(simp add: fresh_prod fresh_atm) apply(simp add: fresh_prod fresh_atm) apply(simp add: fresh_prod fresh_atm) apply(simp add: fresh_prod fresh_atm) apply(simp) done qed lemma c_redu_subst1': assumes a: "M \<longrightarrow>\<^isub>c M'" shows "M{y:=<c>.P} \<longrightarrow>\<^isub>c M'{y:=<c>.P}" using a proof - obtain y'::"name" where fs1: "y'\<sharp>(M,M',P,P,y)" by (rule exists_fresh(1), rule fin_supp, blast) obtain c'::"coname" where fs2: "c'\<sharp>(M,M',P,P,c)" by (rule exists_fresh(2), rule fin_supp, blast) have "M{y:=<c>.P} = ([(y',y)]\<bullet>M){y':=<c'>.([(c',c)]\<bullet>P)}" using fs1 fs2 apply - apply(rule trans) apply(rule_tac y="y'" in subst_rename(3)) apply(simp) apply(rule subst_rename(4)) apply(simp) done also have "\<dots> \<longrightarrow>\<^isub>c ([(y',y)]\<bullet>M'){y':=<c'>.([(c',c)]\<bullet>P)}" using fs1 fs2 apply - apply(rule c_redu_subst1) apply(simp add: c_redu.eqvt a) apply(simp_all add: fresh_left calc_atm fresh_prod) done also have "\<dots> = M'{y:=<c>.P}" using fs1 fs2 apply - apply(rule sym) apply(rule trans) apply(rule_tac y="y'" in subst_rename(3)) apply(simp) apply(rule subst_rename(4)) apply(simp) done finally show ?thesis by simp qed lemma c_redu_subst2': assumes a: "M \<longrightarrow>\<^isub>c M'" shows "M{c:=(y).P} \<longrightarrow>\<^isub>c M'{c:=(y).P}" using a proof - obtain y'::"name" where fs1: "y'\<sharp>(M,M',P,P,y)" by (rule exists_fresh(1), rule fin_supp, blast) obtain c'::"coname" where fs2: "c'\<sharp>(M,M',P,P,c)" by (rule exists_fresh(2), rule fin_supp, blast) have "M{c:=(y).P} = ([(c',c)]\<bullet>M){c':=(y').([(y',y)]\<bullet>P)}" using fs1 fs2 apply - apply(rule trans) apply(rule_tac c="c'" in subst_rename(1)) apply(simp) apply(rule subst_rename(2)) apply(simp) done also have "\<dots> \<longrightarrow>\<^isub>c ([(c',c)]\<bullet>M'){c':=(y').([(y',y)]\<bullet>P)}" using fs1 fs2 apply - apply(rule c_redu_subst2) apply(simp add: c_redu.eqvt a) apply(simp_all add: fresh_left calc_atm fresh_prod) done also have "\<dots> = M'{c:=(y).P}" using fs1 fs2 apply - apply(rule sym) apply(rule trans) apply(rule_tac c="c'" in subst_rename(1)) apply(simp) apply(rule subst_rename(2)) apply(simp) done finally show ?thesis by simp qed lemma aux1: assumes a: "M = M'" "M' \<longrightarrow>\<^isub>l M''" shows "M \<longrightarrow>\<^isub>l M''" using a by simp lemma aux2: assumes a: "M \<longrightarrow>\<^isub>l M'" "M' = M''" shows "M \<longrightarrow>\<^isub>l M''" using a by simp lemma aux3: assumes a: "M = M'" "M' \<longrightarrow>\<^isub>a* M''" shows "M \<longrightarrow>\<^isub>a* M''" using a by simp lemma aux4: assumes a: "M = M'" shows "M \<longrightarrow>\<^isub>a* M'" using a by blast lemma l_redu_subst1: assumes a: "M \<longrightarrow>\<^isub>l M'" shows "M{y:=<c>.P} \<longrightarrow>\<^isub>a* M'{y:=<c>.P}" using a proof(nominal_induct M M' avoiding: y c P rule: l_redu.strong_induct) case LAxR then show ?case apply - apply(rule aux3) apply(rule better_Cut_substn) apply(simp add: abs_fresh) apply(simp) apply(simp add: fresh_atm) apply(auto) apply(rule aux4) apply(simp add: trm.inject alpha calc_atm fresh_atm) apply(rule a_star_trans) apply(rule a_starI) apply(rule al_redu) apply(rule l_redu.intros) apply(simp add: subst_fresh) apply(simp add: fresh_atm) apply(rule fic_subst2) apply(simp_all) apply(rule aux4) apply(rule subst_comm') apply(simp_all) done next case LAxL then show ?case apply - apply(rule aux3) apply(rule better_Cut_substn) apply(simp add: abs_fresh) apply(simp) apply(simp add: trm.inject fresh_atm) apply(auto) apply(rule aux4) apply(rule sym) apply(rule fin_substn_nrename) apply(simp_all) apply(rule a_starI) apply(rule al_redu) apply(rule aux2) apply(rule l_redu.intros) apply(simp add: subst_fresh) apply(simp add: fresh_atm) apply(rule fin_subst1) apply(simp_all) apply(rule subst_comm') apply(simp_all) done next case (LNot v M N u a b) then show ?case proof - { assume asm: "N\<noteq>Ax y b" have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){y:=<c>.P} = (Cut <a>.NotR (u).(M{y:=<c>.P}) a (v).NotL <b>.(N{y:=<c>.P}) v)" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>l (Cut <b>.(N{y:=<c>.P}) (u).(M{y:=<c>.P}))" using prems by (auto intro: l_redu.intros simp add: subst_fresh) also have "\<dots> = (Cut <b>.N (u).M){y:=<c>.P}" using prems by (simp add: subst_fresh abs_fresh fresh_atm) finally have ?thesis by auto } moreover { assume asm: "N=Ax y b" have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){y:=<c>.P} = (Cut <a>.NotR (u).(M{y:=<c>.P}) a (v).NotL <b>.(N{y:=<c>.P}) v)" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* (Cut <b>.(N{y:=<c>.P}) (u).(M{y:=<c>.P}))" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = (Cut <b>.(Cut <c>.P (y).Ax y b) (u).(M{y:=<c>.P}))" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* (Cut <b>.(P[c\<turnstile>c>b]) (u).(M{y:=<c>.P}))" proof (cases "fic P c") case True assume "fic P c" then show ?thesis using prems apply - apply(rule a_starI) apply(rule better_CutL_intro) apply(rule al_redu) apply(rule better_LAxR_intro) apply(simp) done next case False assume "\<not>fic P c" then show ?thesis apply - apply(rule a_star_CutL) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_left) apply(simp) apply(simp add: subst_with_ax2) done qed also have "\<dots> = (Cut <b>.N (u).M){y:=<c>.P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(rule sym) apply(rule crename_swap) apply(simp) done finally have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <b>.N (u).M){y:=<c>.P}" by simp } ultimately show ?thesis by blast qed next case (LAnd1 b a1 M1 a2 M2 N z u) then show ?case proof - { assume asm: "M1\<noteq>Ax y a1" have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){y:=<c>.P} = Cut <b>.AndR <a1>.(M1{y:=<c>.P}) <a2>.(M2{y:=<c>.P}) b (z).AndL1 (u).(N{y:=<c>.P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a1>.(M1{y:=<c>.P}) (u).(N{y:=<c>.P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = (Cut <a1>.M1 (u).N){y:=<c>.P}" using prems by (simp add: subst_fresh abs_fresh fresh_atm) finally have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a1>.M1 (u).N){y:=<c>.P}" by simp } moreover { assume asm: "M1=Ax y a1" have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){y:=<c>.P} = Cut <b>.AndR <a1>.(M1{y:=<c>.P}) <a2>.(M2{y:=<c>.P}) b (z).AndL1 (u).(N{y:=<c>.P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a1>.(M1{y:=<c>.P}) (u).(N{y:=<c>.P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = Cut <a1>.(Cut <c>.P (y). Ax y a1) (u).(N{y:=<c>.P})" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a1>.P[c\<turnstile>c>a1] (u).(N{y:=<c>.P})" proof (cases "fic P c") case True assume "fic P c" then show ?thesis using prems apply - apply(rule a_starI) apply(rule better_CutL_intro) apply(rule al_redu) apply(rule better_LAxR_intro) apply(simp) done next case False assume "\<not>fic P c" then show ?thesis apply - apply(rule a_star_CutL) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_left) apply(simp) apply(simp add: subst_with_ax2) done qed also have "\<dots> = (Cut <a1>.M1 (u).N){y:=<c>.P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(rule sym) apply(rule crename_swap) apply(simp) done finally have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a1>.M1 (u).N){y:=<c>.P}" by simp } ultimately show ?thesis by blast qed next case (LAnd2 b a1 M1 a2 M2 N z u) then show ?case proof - { assume asm: "M2\<noteq>Ax y a2" have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){y:=<c>.P} = Cut <b>.AndR <a1>.(M1{y:=<c>.P}) <a2>.(M2{y:=<c>.P}) b (z).AndL2 (u).(N{y:=<c>.P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a2>.(M2{y:=<c>.P}) (u).(N{y:=<c>.P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = (Cut <a2>.M2 (u).N){y:=<c>.P}" using prems by (simp add: subst_fresh abs_fresh fresh_atm) finally have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a2>.M2 (u).N){y:=<c>.P}" by simp } moreover { assume asm: "M2=Ax y a2" have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){y:=<c>.P} = Cut <b>.AndR <a1>.(M1{y:=<c>.P}) <a2>.(M2{y:=<c>.P}) b (z).AndL2 (u).(N{y:=<c>.P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a2>.(M2{y:=<c>.P}) (u).(N{y:=<c>.P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = Cut <a2>.(Cut <c>.P (y). Ax y a2) (u).(N{y:=<c>.P})" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a2>.P[c\<turnstile>c>a2] (u).(N{y:=<c>.P})" proof (cases "fic P c") case True assume "fic P c" then show ?thesis using prems apply - apply(rule a_starI) apply(rule better_CutL_intro) apply(rule al_redu) apply(rule better_LAxR_intro) apply(simp) done next case False assume "\<not>fic P c" then show ?thesis apply - apply(rule a_star_CutL) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_left) apply(simp) apply(simp add: subst_with_ax2) done qed also have "\<dots> = (Cut <a2>.M2 (u).N){y:=<c>.P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(rule sym) apply(rule crename_swap) apply(simp) done finally have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a2>.M2 (u).N){y:=<c>.P}" by simp } ultimately show ?thesis by blast qed next case (LOr1 b a M N1 N2 z x1 x2 y c P) then show ?case proof - { assume asm: "M\<noteq>Ax y a" have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} = Cut <b>.OrR1 <a>.(M{y:=<c>.P}) b (z).OrL (x1).(N1{y:=<c>.P}) (x2).(N2{y:=<c>.P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{y:=<c>.P}) (x1).(N1{y:=<c>.P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = (Cut <a>.M (x1).N1){y:=<c>.P}" using prems by (simp add: subst_fresh abs_fresh fresh_atm) finally have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x1).N1){y:=<c>.P}" by simp } moreover { assume asm: "M=Ax y a" have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} = Cut <b>.OrR1 <a>.(M{y:=<c>.P}) b (z).OrL (x1).(N1{y:=<c>.P}) (x2).(N2{y:=<c>.P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{y:=<c>.P}) (x1).(N1{y:=<c>.P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = Cut <a>.(Cut <c>.P (y). Ax y a) (x1).(N1{y:=<c>.P})" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.P[c\<turnstile>c>a] (x1).(N1{y:=<c>.P})" proof (cases "fic P c") case True assume "fic P c" then show ?thesis using prems apply - apply(rule a_starI) apply(rule better_CutL_intro) apply(rule al_redu) apply(rule better_LAxR_intro) apply(simp) done next case False assume "\<not>fic P c" then show ?thesis apply - apply(rule a_star_CutL) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_left) apply(simp) apply(simp add: subst_with_ax2) done qed also have "\<dots> = (Cut <a>.M (x1).N1){y:=<c>.P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(rule sym) apply(rule crename_swap) apply(simp) done finally have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x1).N1){y:=<c>.P}" by simp } ultimately show ?thesis by blast qed next case (LOr2 b a M N1 N2 z x1 x2 y c P) then show ?case proof - { assume asm: "M\<noteq>Ax y a" have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} = Cut <b>.OrR2 <a>.(M{y:=<c>.P}) b (z).OrL (x1).(N1{y:=<c>.P}) (x2).(N2{y:=<c>.P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{y:=<c>.P}) (x2).(N2{y:=<c>.P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = (Cut <a>.M (x2).N2){y:=<c>.P}" using prems by (simp add: subst_fresh abs_fresh fresh_atm) finally have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x2).N2){y:=<c>.P}" by simp } moreover { assume asm: "M=Ax y a" have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} = Cut <b>.OrR2 <a>.(M{y:=<c>.P}) b (z).OrL (x1).(N1{y:=<c>.P}) (x2).(N2{y:=<c>.P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{y:=<c>.P}) (x2).(N2{y:=<c>.P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = Cut <a>.(Cut <c>.P (y). Ax y a) (x2).(N2{y:=<c>.P})" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.P[c\<turnstile>c>a] (x2).(N2{y:=<c>.P})" proof (cases "fic P c") case True assume "fic P c" then show ?thesis using prems apply - apply(rule a_starI) apply(rule better_CutL_intro) apply(rule al_redu) apply(rule better_LAxR_intro) apply(simp) done next case False assume "\<not>fic P c" then show ?thesis apply - apply(rule a_star_CutL) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_left) apply(simp) apply(simp add: subst_with_ax2) done qed also have "\<dots> = (Cut <a>.M (x2).N2){y:=<c>.P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(rule sym) apply(rule crename_swap) apply(simp) done finally have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x2).N2){y:=<c>.P}" by simp } ultimately show ?thesis by blast qed next case (LImp z N u Q x M b a d y c P) then show ?case proof - { assume asm: "N\<noteq>Ax y d" have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){y:=<c>.P} = Cut <b>.ImpR (x).<a>.(M{y:=<c>.P}) b (z).ImpL <d>.(N{y:=<c>.P}) (u).(Q{y:=<c>.P}) z" using prems by (simp add: fresh_prod abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{y:=<c>.P}) (x).(M{y:=<c>.P})) (u).(Q{y:=<c>.P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = (Cut <a>.(Cut <d>.N (x).M) (u).Q){y:=<c>.P}" using prems by (simp add: subst_fresh abs_fresh fresh_atm) finally have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a>.(Cut <d>.N (x).M) (u).Q){y:=<c>.P}" by simp } moreover { assume asm: "N=Ax y d" have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){y:=<c>.P} = Cut <b>.ImpR (x).<a>.(M{y:=<c>.P}) b (z).ImpL <d>.(N{y:=<c>.P}) (u).(Q{y:=<c>.P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm fresh_prod) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{y:=<c>.P}) (x).(M{y:=<c>.P})) (u).(Q{y:=<c>.P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = Cut <a>.(Cut <d>.(Cut <c>.P (y).Ax y d) (x).(M{y:=<c>.P})) (u).(Q{y:=<c>.P})" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(P[c\<turnstile>c>d]) (x).(M{y:=<c>.P})) (u).(Q{y:=<c>.P})" proof (cases "fic P c") case True assume "fic P c" then show ?thesis using prems apply - apply(rule a_starI) apply(rule better_CutL_intro) apply(rule a_Cut_l) apply(simp add: subst_fresh abs_fresh) apply(simp add: abs_fresh fresh_atm) apply(rule al_redu) apply(rule better_LAxR_intro) apply(simp) done next case False assume "\<not>fic P c" then show ?thesis using prems apply - apply(rule a_star_CutL) apply(rule a_star_CutL) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_left) apply(simp) apply(simp add: subst_with_ax2) done qed also have "\<dots> = (Cut <a>.(Cut <d>.N (x).M) (u).Q){y:=<c>.P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(simp add: trm.inject) apply(simp add: alpha) apply(rule sym) apply(rule crename_swap) apply(simp) done finally have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a>.(Cut <d>.N (x).M) (u).Q){y:=<c>.P}" by simp } ultimately show ?thesis by blast qed qed lemma l_redu_subst2: assumes a: "M \<longrightarrow>\<^isub>l M'" shows "M{c:=(y).P} \<longrightarrow>\<^isub>a* M'{c:=(y).P}" using a proof(nominal_induct M M' avoiding: y c P rule: l_redu.strong_induct) case LAxR then show ?case apply - apply(rule aux3) apply(rule better_Cut_substc) apply(simp add: abs_fresh) apply(simp add: abs_fresh) apply(simp add: trm.inject fresh_atm) apply(auto) apply(rule aux4) apply(rule sym) apply(rule fic_substc_crename) apply(simp_all) apply(rule a_starI) apply(rule al_redu) apply(rule aux2) apply(rule l_redu.intros) apply(simp add: subst_fresh) apply(simp add: fresh_atm) apply(rule fic_subst1) apply(simp_all) apply(rule subst_comm') apply(simp_all) done next case LAxL then show ?case apply - apply(rule aux3) apply(rule better_Cut_substc) apply(simp) apply(simp add: abs_fresh) apply(simp add: fresh_atm) apply(auto) apply(rule aux4) apply(simp add: trm.inject alpha calc_atm fresh_atm) apply(rule a_star_trans) apply(rule a_starI) apply(rule al_redu) apply(rule l_redu.intros) apply(simp add: subst_fresh) apply(simp add: fresh_atm) apply(rule fin_subst2) apply(simp_all) apply(rule aux4) apply(rule subst_comm') apply(simp_all) done next case (LNot v M N u a b) then show ?case proof - { assume asm: "M\<noteq>Ax u c" have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){c:=(y).P} = (Cut <a>.NotR (u).(M{c:=(y).P}) a (v).NotL <b>.(N{c:=(y).P}) v)" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>l (Cut <b>.(N{c:=(y).P}) (u).(M{c:=(y).P}))" using prems by (auto intro: l_redu.intros simp add: subst_fresh) also have "\<dots> = (Cut <b>.N (u).M){c:=(y).P}" using prems by (simp add: subst_fresh abs_fresh fresh_atm) finally have ?thesis by auto } moreover { assume asm: "M=Ax u c" have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){c:=(y).P} = (Cut <a>.NotR (u).(M{c:=(y).P}) a (v).NotL <b>.(N{c:=(y).P}) v)" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* (Cut <b>.(N{c:=(y).P}) (u).(M{c:=(y).P}))" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = (Cut <b>.(N{c:=(y).P}) (u).(Cut <c>.(Ax u c) (y).P))" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* (Cut <b>.(N{c:=(y).P}) (u).(P[y\<turnstile>n>u]))" proof (cases "fin P y") case True assume "fin P y" then show ?thesis using prems apply - apply(rule a_starI) apply(rule better_CutR_intro) apply(rule al_redu) apply(rule better_LAxL_intro) apply(simp) done next case False assume "\<not>fin P y" then show ?thesis apply - apply(rule a_star_CutR) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_right) apply(simp) apply(simp add: subst_with_ax1) done qed also have "\<dots> = (Cut <b>.N (u).M){c:=(y).P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(rule sym) apply(rule nrename_swap) apply(simp) done finally have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <b>.N (u).M){c:=(y).P}" by simp } ultimately show ?thesis by blast qed next case (LAnd1 b a1 M1 a2 M2 N z u) then show ?case proof - { assume asm: "N\<noteq>Ax u c" have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){c:=(y).P} = Cut <b>.AndR <a1>.(M1{c:=(y).P}) <a2>.(M2{c:=(y).P}) b (z).AndL1 (u).(N{c:=(y).P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a1>.(M1{c:=(y).P}) (u).(N{c:=(y).P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = (Cut <a1>.M1 (u).N){c:=(y).P}" using prems by (simp add: subst_fresh abs_fresh fresh_atm) finally have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a1>.M1 (u).N){c:=(y).P}" by simp } moreover { assume asm: "N=Ax u c" have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){c:=(y).P} = Cut <b>.AndR <a1>.(M1{c:=(y).P}) <a2>.(M2{c:=(y).P}) b (z).AndL1 (u).(N{c:=(y).P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a1>.(M1{c:=(y).P}) (u).(N{c:=(y).P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = Cut <a1>.(M1{c:=(y).P}) (u).(Cut <c>.(Ax u c) (y).P)" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a1>.(M1{c:=(y).P}) (u).(P[y\<turnstile>n>u])" proof (cases "fin P y") case True assume "fin P y" then show ?thesis using prems apply - apply(rule a_starI) apply(rule better_CutR_intro) apply(rule al_redu) apply(rule better_LAxL_intro) apply(simp) done next case False assume "\<not>fin P y" then show ?thesis apply - apply(rule a_star_CutR) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_right) apply(simp) apply(simp add: subst_with_ax1) done qed also have "\<dots> = (Cut <a1>.M1 (u).N){c:=(y).P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(rule sym) apply(rule nrename_swap) apply(simp) done finally have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a1>.M1 (u).N){c:=(y).P}" by simp } ultimately show ?thesis by blast qed next case (LAnd2 b a1 M1 a2 M2 N z u) then show ?case proof - { assume asm: "N\<noteq>Ax u c" have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){c:=(y).P} = Cut <b>.AndR <a1>.(M1{c:=(y).P}) <a2>.(M2{c:=(y).P}) b (z).AndL2 (u).(N{c:=(y).P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a2>.(M2{c:=(y).P}) (u).(N{c:=(y).P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = (Cut <a2>.M2 (u).N){c:=(y).P}" using prems by (simp add: subst_fresh abs_fresh fresh_atm) finally have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a2>.M2 (u).N){c:=(y).P}" by simp } moreover { assume asm: "N=Ax u c" have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){c:=(y).P} = Cut <b>.AndR <a1>.(M1{c:=(y).P}) <a2>.(M2{c:=(y).P}) b (z).AndL2 (u).(N{c:=(y).P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a2>.(M2{c:=(y).P}) (u).(N{c:=(y).P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = Cut <a2>.(M2{c:=(y).P}) (u).(Cut <c>.(Ax u c) (y).P)" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a2>.(M2{c:=(y).P}) (u).(P[y\<turnstile>n>u])" proof (cases "fin P y") case True assume "fin P y" then show ?thesis using prems apply - apply(rule a_starI) apply(rule better_CutR_intro) apply(rule al_redu) apply(rule better_LAxL_intro) apply(simp) done next case False assume "\<not>fin P y" then show ?thesis apply - apply(rule a_star_CutR) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_right) apply(simp) apply(simp add: subst_with_ax1) done qed also have "\<dots> = (Cut <a2>.M2 (u).N){c:=(y).P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(rule sym) apply(rule nrename_swap) apply(simp) done finally have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a2>.M2 (u).N){c:=(y).P}" by simp } ultimately show ?thesis by blast qed next case (LOr1 b a M N1 N2 z x1 x2 y c P) then show ?case proof - { assume asm: "N1\<noteq>Ax x1 c" have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} = Cut <b>.OrR1 <a>.(M{c:=(y).P}) b (z).OrL (x1).(N1{c:=(y).P}) (x2).(N2{c:=(y).P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{c:=(y).P}) (x1).(N1{c:=(y).P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = (Cut <a>.M (x1).N1){c:=(y).P}" using prems by (simp add: subst_fresh abs_fresh fresh_atm) finally have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x1).N1){c:=(y).P}" by simp } moreover { assume asm: "N1=Ax x1 c" have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} = Cut <b>.OrR1 <a>.(M{c:=(y).P}) b (z).OrL (x1).(N1{c:=(y).P}) (x2).(N2{c:=(y).P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{c:=(y).P}) (x1).(N1{c:=(y).P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = Cut <a>.(M{c:=(y).P}) (x1).(Cut <c>.(Ax x1 c) (y).P)" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{c:=(y).P}) (x1).(P[y\<turnstile>n>x1])" proof (cases "fin P y") case True assume "fin P y" then show ?thesis using prems apply - apply(rule a_starI) apply(rule better_CutR_intro) apply(rule al_redu) apply(rule better_LAxL_intro) apply(simp) done next case False assume "\<not>fin P y" then show ?thesis apply - apply(rule a_star_CutR) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_right) apply(simp) apply(simp add: subst_with_ax1) done qed also have "\<dots> = (Cut <a>.M (x1).N1){c:=(y).P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(rule sym) apply(rule nrename_swap) apply(simp) done finally have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x1).N1){c:=(y).P}" by simp } ultimately show ?thesis by blast qed next case (LOr2 b a M N1 N2 z x1 x2 y c P) then show ?case proof - { assume asm: "N2\<noteq>Ax x2 c" have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} = Cut <b>.OrR2 <a>.(M{c:=(y).P}) b (z).OrL (x1).(N1{c:=(y).P}) (x2).(N2{c:=(y).P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{c:=(y).P}) (x2).(N2{c:=(y).P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = (Cut <a>.M (x2).N2){c:=(y).P}" using prems by (simp add: subst_fresh abs_fresh fresh_atm) finally have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x2).N2){c:=(y).P}" by simp } moreover { assume asm: "N2=Ax x2 c" have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} = Cut <b>.OrR2 <a>.(M{c:=(y).P}) b (z).OrL (x1).(N1{c:=(y).P}) (x2).(N2{c:=(y).P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{c:=(y).P}) (x2).(N2{c:=(y).P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = Cut <a>.(M{c:=(y).P}) (x2).(Cut <c>.(Ax x2 c) (y).P)" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{c:=(y).P}) (x2).(P[y\<turnstile>n>x2])" proof (cases "fin P y") case True assume "fin P y" then show ?thesis using prems apply - apply(rule a_starI) apply(rule better_CutR_intro) apply(rule al_redu) apply(rule better_LAxL_intro) apply(simp) done next case False assume "\<not>fin P y" then show ?thesis apply - apply(rule a_star_CutR) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_right) apply(simp) apply(simp add: subst_with_ax1) done qed also have "\<dots> = (Cut <a>.M (x2).N2){c:=(y).P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(rule sym) apply(rule nrename_swap) apply(simp) done finally have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x2).N2){c:=(y).P}" by simp } ultimately show ?thesis by blast qed next case (LImp z N u Q x M b a d y c P) then show ?case proof - { assume asm: "M\<noteq>Ax x c \<and> Q\<noteq>Ax u c" have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} = Cut <b>.ImpR (x).<a>.(M{c:=(y).P}) b (z).ImpL <d>.(N{c:=(y).P}) (u).(Q{c:=(y).P}) z" using prems by (simp add: fresh_prod abs_fresh fresh_atm) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(M{c:=(y).P})) (u).(Q{c:=(y).P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" using prems by (simp add: subst_fresh abs_fresh fresh_atm) finally have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" by simp } moreover { assume asm: "M=Ax x c \<and> Q\<noteq>Ax u c" have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} = Cut <b>.ImpR (x).<a>.(M{c:=(y).P}) b (z).ImpL <d>.(N{c:=(y).P}) (u).(Q{c:=(y).P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm fresh_prod) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(M{c:=(y).P})) (u).(Q{c:=(y).P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(Cut <c>.Ax x c (y).P)) (u).(Q{c:=(y).P})" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(P[y\<turnstile>n>x])) (u).(Q{c:=(y).P})" proof (cases "fin P y") case True assume "fin P y" then show ?thesis using prems apply - apply(rule a_star_CutL) apply(rule a_star_CutR) apply(rule a_star_trans) apply(rule a_starI) apply(rule al_redu) apply(rule better_LAxL_intro) apply(simp) apply(simp) done next case False assume "\<not>fin P y" then show ?thesis using prems apply - apply(rule a_star_CutL) apply(rule a_star_CutR) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_right) apply(simp) apply(simp add: subst_with_ax1) done qed also have "\<dots> = (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(simp add: trm.inject) apply(simp add: alpha) apply(simp add: nrename_swap) done finally have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" by simp } moreover { assume asm: "M\<noteq>Ax x c \<and> Q=Ax u c" have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} = Cut <b>.ImpR (x).<a>.(M{c:=(y).P}) b (z).ImpL <d>.(N{c:=(y).P}) (u).(Q{c:=(y).P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm fresh_prod) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(M{c:=(y).P})) (u).(Q{c:=(y).P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(M{c:=(y).P})) (u).(Cut <c>.Ax u c (y).P)" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(M{c:=(y).P})) (u).(P[y\<turnstile>n>u])" proof (cases "fin P y") case True assume "fin P y" then show ?thesis using prems apply - apply(rule a_star_CutR) apply(rule a_starI) apply(rule al_redu) apply(rule better_LAxL_intro) apply(simp) done next case False assume "\<not>fin P y" then show ?thesis using prems apply - apply(rule a_star_CutR) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_right) apply(simp) apply(simp add: subst_with_ax1) done qed also have "\<dots> = (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(simp add: nrename_swap) done finally have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" by simp } moreover { assume asm: "M=Ax x c \<and> Q=Ax u c" have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} = Cut <b>.ImpR (x).<a>.(M{c:=(y).P}) b (z).ImpL <d>.(N{c:=(y).P}) (u).(Q{c:=(y).P}) z" using prems by (simp add: subst_fresh abs_fresh fresh_atm fresh_prod) also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(M{c:=(y).P})) (u).(Q{c:=(y).P})" using prems apply - apply(rule a_starI) apply(rule al_redu) apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh) done also have "\<dots> = Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(Cut <c>.Ax x c (y).P)) (u).(Cut <c>.Ax u c (y).P)" using prems by simp also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(Cut <c>.Ax x c (y).P)) (u).(P[y\<turnstile>n>u])" proof (cases "fin P y") case True assume "fin P y" then show ?thesis using prems apply - apply(rule a_star_CutR) apply(rule a_starI) apply(rule al_redu) apply(rule better_LAxL_intro) apply(simp) done next case False assume "\<not>fin P y" then show ?thesis using prems apply - apply(rule a_star_CutR) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_right) apply(simp) apply(simp add: subst_with_ax1) done qed also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(P[y\<turnstile>n>x])) (u).(P[y\<turnstile>n>u])" proof (cases "fin P y") case True assume "fin P y" then show ?thesis using prems apply - apply(rule a_star_CutL) apply(rule a_star_CutR) apply(rule a_starI) apply(rule al_redu) apply(rule better_LAxL_intro) apply(simp) done next case False assume "\<not>fin P y" then show ?thesis using prems apply - apply(rule a_star_CutL) apply(rule a_star_CutR) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_right) apply(simp) apply(simp add: subst_with_ax1) done qed also have "\<dots> = (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" using prems apply - apply(auto simp add: subst_fresh abs_fresh) apply(simp add: trm.inject) apply(rule conjI) apply(simp add: alpha fresh_atm trm.inject) apply(simp add: nrename_swap) apply(simp add: alpha fresh_atm trm.inject) apply(simp add: nrename_swap) done finally have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" by simp } ultimately show ?thesis by blast qed qed lemma a_redu_subst1: assumes a: "M \<longrightarrow>\<^isub>a M'" shows "M{y:=<c>.P} \<longrightarrow>\<^isub>a* M'{y:=<c>.P}" using a proof(nominal_induct avoiding: y c P rule: a_redu.strong_induct) case al_redu then show ?case by (simp only: l_redu_subst1) next case ac_redu then show ?case apply - apply(rule a_starI) apply(rule a_redu.ac_redu) apply(simp only: c_redu_subst1') done next case (a_Cut_l a N x M M' y c P) then show ?case apply(simp add: subst_fresh fresh_a_redu) apply(rule conjI) apply(rule impI)+ apply(simp) apply(drule ax_do_not_a_reduce) apply(simp) apply(rule impI) apply(rule conjI) apply(rule impI) apply(simp) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="P" in meta_spec) apply(simp) apply(rule a_star_trans) apply(rule a_star_CutL) apply(assumption) apply(rule a_star_trans) apply(rule_tac M'="P[c\<turnstile>c>a]" in a_star_CutL) apply(case_tac "fic P c") apply(rule a_starI) apply(rule al_redu) apply(rule better_LAxR_intro) apply(simp) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_left) apply(simp) apply(rule subst_with_ax2) apply(rule aux4) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(simp add: crename_swap) apply(rule impI) apply(rule a_star_CutL) apply(auto) done next case (a_Cut_r a N x M M' y c P) then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_CutR) apply(auto)[1] apply(rule a_star_CutR) apply(auto)[1] done next case a_NotL then show ?case apply(auto) apply(generate_fresh "name") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutR) apply(rule a_star_NotL) apply(auto)[1] apply(rule a_star_NotL) apply(auto)[1] done next case a_NotR then show ?case apply(auto) apply(rule a_star_NotR) apply(auto)[1] done next case a_AndR_l then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_AndR) apply(auto) done next case a_AndR_r then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_AndR) apply(auto) done next case a_AndL1 then show ?case apply(auto) apply(generate_fresh "name") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutR) apply(rule a_star_AndL1) apply(auto)[1] apply(rule a_star_AndL1) apply(auto)[1] done next case a_AndL2 then show ?case apply(auto) apply(generate_fresh "name") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutR) apply(rule a_star_AndL2) apply(auto)[1] apply(rule a_star_AndL2) apply(auto)[1] done next case a_OrR1 then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_OrR1) apply(auto) done next case a_OrR2 then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_OrR2) apply(auto) done next case a_OrL_l then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(generate_fresh "name") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutR) apply(rule a_star_OrL) apply(auto) apply(rule a_star_OrL) apply(auto) done next case a_OrL_r then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(generate_fresh "name") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutR) apply(rule a_star_OrL) apply(auto) apply(rule a_star_OrL) apply(auto) done next case a_ImpR then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_ImpR) apply(auto) done next case a_ImpL_r then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(generate_fresh "name") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutR) apply(rule a_star_ImpL) apply(auto) apply(rule a_star_ImpL) apply(auto) done next case a_ImpL_l then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(generate_fresh "name") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutR) apply(rule a_star_ImpL) apply(auto) apply(rule a_star_ImpL) apply(auto) done qed lemma a_redu_subst2: assumes a: "M \<longrightarrow>\<^isub>a M'" shows "M{c:=(y).P} \<longrightarrow>\<^isub>a* M'{c:=(y).P}" using a proof(nominal_induct avoiding: y c P rule: a_redu.strong_induct) case al_redu then show ?case by (simp only: l_redu_subst2) next case ac_redu then show ?case apply - apply(rule a_starI) apply(rule a_redu.ac_redu) apply(simp only: c_redu_subst2') done next case (a_Cut_r a N x M M' y c P) then show ?case apply(simp add: subst_fresh fresh_a_redu) apply(rule conjI) apply(rule impI)+ apply(simp) apply(drule ax_do_not_a_reduce) apply(simp) apply(rule impI) apply(rule conjI) apply(rule impI) apply(simp) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="P" in meta_spec) apply(simp) apply(rule a_star_trans) apply(rule a_star_CutR) apply(assumption) apply(rule a_star_trans) apply(rule_tac N'="P[y\<turnstile>n>x]" in a_star_CutR) apply(case_tac "fin P y") apply(rule a_starI) apply(rule al_redu) apply(rule better_LAxL_intro) apply(simp) apply(rule a_star_trans) apply(rule a_starI) apply(rule ac_redu) apply(rule better_right) apply(simp) apply(rule subst_with_ax1) apply(rule aux4) apply(simp add: trm.inject) apply(simp add: alpha fresh_atm) apply(simp add: nrename_swap) apply(rule impI) apply(rule a_star_CutR) apply(auto) done next case (a_Cut_l a N x M M' y c P) then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_CutL) apply(auto)[1] apply(rule a_star_CutL) apply(auto)[1] done next case a_NotR then show ?case apply(auto) apply(generate_fresh "coname") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutL) apply(rule a_star_NotR) apply(auto)[1] apply(rule a_star_NotR) apply(auto)[1] done next case a_NotL then show ?case apply(auto) apply(rule a_star_NotL) apply(auto)[1] done next case a_AndR_l then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(generate_fresh "coname") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutL) apply(rule a_star_AndR) apply(auto) apply(rule a_star_AndR) apply(auto) done next case a_AndR_r then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(generate_fresh "coname") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutL) apply(rule a_star_AndR) apply(auto) apply(rule a_star_AndR) apply(auto) done next case a_AndL1 then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_AndL1) apply(auto) done next case a_AndL2 then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_AndL2) apply(auto) done next case a_OrR1 then show ?case apply(auto) apply(generate_fresh "coname") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutL) apply(rule a_star_OrR1) apply(auto)[1] apply(rule a_star_OrR1) apply(auto)[1] done next case a_OrR2 then show ?case apply(auto) apply(generate_fresh "coname") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutL) apply(rule a_star_OrR2) apply(auto)[1] apply(rule a_star_OrR2) apply(auto)[1] done next case a_OrL_l then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_OrL) apply(auto) done next case a_OrL_r then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_OrL) apply(auto) done next case a_ImpR then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(generate_fresh "coname") apply(fresh_fun_simp) apply(fresh_fun_simp) apply(simp add: subst_fresh) apply(rule a_star_CutL) apply(rule a_star_ImpR) apply(auto) apply(rule a_star_ImpR) apply(auto) done next case a_ImpL_l then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_ImpL) apply(auto) done next case a_ImpL_r then show ?case apply(auto simp add: subst_fresh fresh_a_redu) apply(rule a_star_ImpL) apply(auto) done qed lemma a_star_subst1: assumes a: "M \<longrightarrow>\<^isub>a* M'" shows "M{y:=<c>.P} \<longrightarrow>\<^isub>a* M'{y:=<c>.P}" using a apply(induct) apply(blast) apply(drule_tac y="y" and c="c" and P="P" in a_redu_subst1) apply(auto) done lemma a_star_subst2: assumes a: "M \<longrightarrow>\<^isub>a* M'" shows "M{c:=(y).P} \<longrightarrow>\<^isub>a* M'{c:=(y).P}" using a apply(induct) apply(blast) apply(drule_tac y="y" and c="c" and P="P" in a_redu_subst2) apply(auto) done text {* Candidates and SN *} text {* SNa *} inductive SNa :: "trm \<Rightarrow> bool" where SNaI: "(\<And>M'. M \<longrightarrow>\<^isub>a M' \<Longrightarrow> SNa M') \<Longrightarrow> SNa M" lemma SNa_induct[consumes 1]: assumes major: "SNa M" assumes hyp: "\<And>M'. SNa M' \<Longrightarrow> (\<forall>M''. M'\<longrightarrow>\<^isub>a M'' \<longrightarrow> P M'' \<Longrightarrow> P M')" shows "P M" apply (rule major[THEN SNa.induct]) apply (rule hyp) apply (rule SNaI) apply (blast)+ done lemma double_SNa_aux: assumes a_SNa: "SNa a" and b_SNa: "SNa b" and hyp: "\<And>x z. (\<And>y. x\<longrightarrow>\<^isub>a y \<Longrightarrow> SNa y) \<Longrightarrow> (\<And>y. x\<longrightarrow>\<^isub>a y \<Longrightarrow> P y z) \<Longrightarrow> (\<And>u. z\<longrightarrow>\<^isub>a u \<Longrightarrow> SNa u) \<Longrightarrow> (\<And>u. z\<longrightarrow>\<^isub>a u \<Longrightarrow> P x u) \<Longrightarrow> P x z" shows "P a b" proof - from a_SNa have r: "\<And>b. SNa b \<Longrightarrow> P a b" proof (induct a rule: SNa.induct) case (SNaI x) note SNa' = this have "SNa b" by fact thus ?case proof (induct b rule: SNa.induct) case (SNaI y) show ?case apply (rule hyp) apply (erule SNa') apply (erule SNa') apply (rule SNa.SNaI) apply (erule SNaI)+ done qed qed from b_SNa show ?thesis by (rule r) qed lemma double_SNa: "\<lbrakk>SNa a; SNa b; \<forall>x z. ((\<forall>y. x\<longrightarrow>\<^isub>ay \<longrightarrow> P y z) \<and> (\<forall>u. z\<longrightarrow>\<^isub>a u \<longrightarrow> P x u)) \<longrightarrow> P x z\<rbrakk> \<Longrightarrow> P a b" apply(rule_tac double_SNa_aux) apply(assumption)+ apply(blast) done lemma a_preserves_SNa: assumes a: "SNa M" "M\<longrightarrow>\<^isub>a M'" shows "SNa M'" using a by (erule_tac SNa.cases) (simp) lemma a_star_preserves_SNa: assumes a: "SNa M" and b: "M\<longrightarrow>\<^isub>a* M'" shows "SNa M'" using b a by (induct) (auto simp add: a_preserves_SNa) lemma Ax_in_SNa: shows "SNa (Ax x a)" apply(rule SNaI) apply(erule a_redu.cases, auto) apply(erule l_redu.cases, auto) apply(erule c_redu.cases, auto) done lemma NotL_in_SNa: assumes a: "SNa M" shows "SNa (NotL <a>.M x)" using a apply(induct) apply(rule SNaI) apply(erule a_redu.cases, auto) apply(erule l_redu.cases, auto) apply(erule c_redu.cases, auto) apply(auto simp add: trm.inject alpha) apply(rotate_tac 1) apply(drule_tac x="[(a,aa)]\<bullet>M'a" in meta_spec) apply(simp add: a_redu.eqvt) apply(subgoal_tac "NotL <a>.([(a,aa)]\<bullet>M'a) x = NotL <aa>.M'a x") apply(simp) apply(simp add: trm.inject alpha fresh_a_redu) done lemma NotR_in_SNa: assumes a: "SNa M" shows "SNa (NotR (x).M a)" using a apply(induct) apply(rule SNaI) apply(erule a_redu.cases, auto) apply(erule l_redu.cases, auto) apply(erule c_redu.cases, auto) apply(auto simp add: trm.inject alpha) apply(rotate_tac 1) apply(drule_tac x="[(x,xa)]\<bullet>M'a" in meta_spec) apply(simp add: a_redu.eqvt) apply(rule_tac s="NotR (x).([(x,xa)]\<bullet>M'a) a" in subst) apply(simp add: trm.inject alpha fresh_a_redu) apply(simp) done lemma AndL1_in_SNa: assumes a: "SNa M" shows "SNa (AndL1 (x).M y)" using a apply(induct) apply(rule SNaI) apply(erule a_redu.cases, auto) apply(erule l_redu.cases, auto) apply(erule c_redu.cases, auto) apply(auto simp add: trm.inject alpha) apply(rotate_tac 1) apply(drule_tac x="[(x,xa)]\<bullet>M'a" in meta_spec) apply(simp add: a_redu.eqvt) apply(rule_tac s="AndL1 x.([(x,xa)]\<bullet>M'a) y" in subst) apply(simp add: trm.inject alpha fresh_a_redu) apply(simp) done lemma AndL2_in_SNa: assumes a: "SNa M" shows "SNa (AndL2 (x).M y)" using a apply(induct) apply(rule SNaI) apply(erule a_redu.cases, auto) apply(erule l_redu.cases, auto) apply(erule c_redu.cases, auto) apply(auto simp add: trm.inject alpha) apply(rotate_tac 1) apply(drule_tac x="[(x,xa)]\<bullet>M'a" in meta_spec) apply(simp add: a_redu.eqvt) apply(rule_tac s="AndL2 x.([(x,xa)]\<bullet>M'a) y" in subst) apply(simp add: trm.inject alpha fresh_a_redu) apply(simp) done lemma OrR1_in_SNa: assumes a: "SNa M" shows "SNa (OrR1 <a>.M b)" using a apply(induct) apply(rule SNaI) apply(erule a_redu.cases, auto) apply(erule l_redu.cases, auto) apply(erule c_redu.cases, auto) apply(auto simp add: trm.inject alpha) apply(rotate_tac 1) apply(drule_tac x="[(a,aa)]\<bullet>M'a" in meta_spec) apply(simp add: a_redu.eqvt) apply(rule_tac s="OrR1 <a>.([(a,aa)]\<bullet>M'a) b" in subst) apply(simp add: trm.inject alpha fresh_a_redu) apply(simp) done lemma OrR2_in_SNa: assumes a: "SNa M" shows "SNa (OrR2 <a>.M b)" using a apply(induct) apply(rule SNaI) apply(erule a_redu.cases, auto) apply(erule l_redu.cases, auto) apply(erule c_redu.cases, auto) apply(auto simp add: trm.inject alpha) apply(rotate_tac 1) apply(drule_tac x="[(a,aa)]\<bullet>M'a" in meta_spec) apply(simp add: a_redu.eqvt) apply(rule_tac s="OrR2 <a>.([(a,aa)]\<bullet>M'a) b" in subst) apply(simp add: trm.inject alpha fresh_a_redu) apply(simp) done lemma ImpR_in_SNa: assumes a: "SNa M" shows "SNa (ImpR (x).<a>.M b)" using a apply(induct) apply(rule SNaI) apply(erule a_redu.cases, auto) apply(erule l_redu.cases, auto) apply(erule c_redu.cases, auto) apply(auto simp add: trm.inject alpha abs_fresh abs_perm calc_atm) apply(rotate_tac 1) apply(drule_tac x="[(a,aa)]\<bullet>M'a" in meta_spec) apply(simp add: a_redu.eqvt) apply(rule_tac s="ImpR (x).<a>.([(a,aa)]\<bullet>M'a) b" in subst) apply(simp add: trm.inject alpha fresh_a_redu) apply(simp) apply(rotate_tac 1) apply(drule_tac x="[(x,xa)]\<bullet>M'a" in meta_spec) apply(simp add: a_redu.eqvt) apply(rule_tac s="ImpR (x).<a>.([(x,xa)]\<bullet>M'a) b" in subst) apply(simp add: trm.inject alpha fresh_a_redu abs_fresh abs_perm calc_atm) apply(simp) apply(rotate_tac 1) apply(drule_tac x="[(a,aa)]\<bullet>[(x,xa)]\<bullet>M'a" in meta_spec) apply(simp add: a_redu.eqvt) apply(rule_tac s="ImpR (x).<a>.([(a,aa)]\<bullet>[(x,xa)]\<bullet>M'a) b" in subst) apply(simp add: trm.inject alpha fresh_a_redu abs_fresh abs_perm calc_atm) apply(simp add: fresh_left calc_atm fresh_a_redu) apply(simp) done lemma AndR_in_SNa: assumes a: "SNa M" "SNa N" shows "SNa (AndR <a>.M <b>.N c)" apply(rule_tac a="M" and b="N" in double_SNa) apply(rule a)+ apply(auto) apply(rule SNaI) apply(drule a_redu_AndR_elim) apply(auto) done lemma OrL_in_SNa: assumes a: "SNa M" "SNa N" shows "SNa (OrL (x).M (y).N z)" apply(rule_tac a="M" and b="N" in double_SNa) apply(rule a)+ apply(auto) apply(rule SNaI) apply(drule a_redu_OrL_elim) apply(auto) done lemma ImpL_in_SNa: assumes a: "SNa M" "SNa N" shows "SNa (ImpL <a>.M (y).N z)" apply(rule_tac a="M" and b="N" in double_SNa) apply(rule a)+ apply(auto) apply(rule SNaI) apply(drule a_redu_ImpL_elim) apply(auto) done lemma SNa_eqvt: fixes pi1::"name prm" and pi2::"coname prm" shows "SNa M \<Longrightarrow> SNa (pi1\<bullet>M)" and "SNa M \<Longrightarrow> SNa (pi2\<bullet>M)" apply - apply(induct rule: SNa.induct) apply(rule SNaI) apply(drule_tac pi="(rev pi1)" in a_redu.eqvt(1)) apply(rotate_tac 1) apply(drule_tac x="(rev pi1)\<bullet>M'" in meta_spec) apply(perm_simp) apply(induct rule: SNa.induct) apply(rule SNaI) apply(drule_tac pi="(rev pi2)" in a_redu.eqvt(2)) apply(rotate_tac 1) apply(drule_tac x="(rev pi2)\<bullet>M'" in meta_spec) apply(perm_simp) done text {* set operators *} definition AXIOMSn :: "ty \<Rightarrow> ntrm set" where "AXIOMSn B \<equiv> { (x):(Ax y b) | x y b. True }" definition AXIOMSc::"ty \<Rightarrow> ctrm set" where "AXIOMSc B \<equiv> { <a>:(Ax y b) | a y b. True }" definition BINDINGn::"ty \<Rightarrow> ctrm set \<Rightarrow> ntrm set" where "BINDINGn B X \<equiv> { (x):M | x M. \<forall>a P. <a>:P\<in>X \<longrightarrow> SNa (M{x:=<a>.P})}" definition BINDINGc::"ty \<Rightarrow> ntrm set \<Rightarrow> ctrm set" where "BINDINGc B X \<equiv> { <a>:M | a M. \<forall>x P. (x):P\<in>X \<longrightarrow> SNa (M{a:=(x).P})}" lemma BINDINGn_decreasing: shows "X\<subseteq>Y \<Longrightarrow> BINDINGn B Y \<subseteq> BINDINGn B X" by (simp add: BINDINGn_def) (blast) lemma BINDINGc_decreasing: shows "X\<subseteq>Y \<Longrightarrow> BINDINGc B Y \<subseteq> BINDINGc B X" by (simp add: BINDINGc_def) (blast) nominal_primrec NOTRIGHT :: "ty \<Rightarrow> ntrm set \<Rightarrow> ctrm set" where "NOTRIGHT (NOT B) X = { <a>:NotR (x).M a | a x M. fic (NotR (x).M a) a \<and> (x):M \<in> X }" apply(rule TrueI)+ done lemma NOTRIGHT_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>(NOTRIGHT (NOT B) X)) = NOTRIGHT (NOT B) (pi\<bullet>X)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fic.eqvt(1)) apply(simp) apply(rule_tac x="(xb):M" in exI) apply(simp) apply(rule_tac x="(rev pi)\<bullet>(<a>:NotR (xa).M a)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fic.eqvt(1)) apply(simp) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp add: swap_simps) done lemma NOTRIGHT_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>(NOTRIGHT (NOT B) X)) = NOTRIGHT (NOT B) (pi\<bullet>X)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fic.eqvt(2)) apply(simp) apply(rule_tac x="(xb):M" in exI) apply(simp) apply(rule_tac x="<((rev pi)\<bullet>a)>:NotR ((rev pi)\<bullet>xa).((rev pi)\<bullet>M) ((rev pi)\<bullet>a)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fic.eqvt(2)) apply(simp) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: swap_simps) done nominal_primrec NOTLEFT :: "ty \<Rightarrow> ctrm set \<Rightarrow> ntrm set" where "NOTLEFT (NOT B) X = { (x):NotL <a>.M x | a x M. fin (NotL <a>.M x) x \<and> <a>:M \<in> X }" apply(rule TrueI)+ done lemma NOTLEFT_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>(NOTLEFT (NOT B) X)) = NOTLEFT (NOT B) (pi\<bullet>X)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fin.eqvt(1)) apply(simp) apply(rule_tac x="<a>:M" in exI) apply(simp) apply(rule_tac x="(((rev pi)\<bullet>xa)):NotL <((rev pi)\<bullet>a)>.((rev pi)\<bullet>M) ((rev pi)\<bullet>xa)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fin.eqvt(1)) apply(simp) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp add: swap_simps) done lemma NOTLEFT_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>(NOTLEFT (NOT B) X)) = NOTLEFT (NOT B) (pi\<bullet>X)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fin.eqvt(2)) apply(simp) apply(rule_tac x="<a>:M" in exI) apply(simp) apply(rule_tac x="(((rev pi)\<bullet>xa)):NotL <((rev pi)\<bullet>a)>.((rev pi)\<bullet>M) ((rev pi)\<bullet>xa)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fin.eqvt(2)) apply(simp) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: swap_simps) done nominal_primrec ANDRIGHT :: "ty \<Rightarrow> ctrm set \<Rightarrow> ctrm set \<Rightarrow> ctrm set" where "ANDRIGHT (B AND C) X Y = { <c>:AndR <a>.M <b>.N c | c a b M N. fic (AndR <a>.M <b>.N c) c \<and> <a>:M \<in> X \<and> <b>:N \<in> Y }" apply(rule TrueI)+ done lemma ANDRIGHT_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>(ANDRIGHT (A AND B) X Y)) = ANDRIGHT (A AND B) (pi\<bullet>X) (pi\<bullet>Y)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>c" in exI) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>b" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(rule_tac x="pi\<bullet>N" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fic.eqvt(1)) apply(simp) apply(rule conjI) apply(rule_tac x="<a>:M" in exI) apply(simp) apply(rule_tac x="<b>:N" in exI) apply(simp) apply(rule_tac x="(rev pi)\<bullet>(<c>:AndR <a>.M <b>.N c)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>c" in exI) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>b" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(rule_tac x="(rev pi)\<bullet>N" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fic.eqvt(1)) apply(simp) apply(drule sym) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp add: swap_simps) done lemma ANDRIGHT_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>(ANDRIGHT (A AND B) X Y)) = ANDRIGHT (A AND B) (pi\<bullet>X) (pi\<bullet>Y)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>c" in exI) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>b" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(rule_tac x="pi\<bullet>N" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fic.eqvt(2)) apply(simp) apply(rule conjI) apply(rule_tac x="<a>:M" in exI) apply(simp) apply(rule_tac x="<b>:N" in exI) apply(simp) apply(rule_tac x="(rev pi)\<bullet>(<c>:AndR <a>.M <b>.N c)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>c" in exI) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>b" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(rule_tac x="(rev pi)\<bullet>N" in exI) apply(simp) apply(drule_tac pi="rev pi" in fic.eqvt(2)) apply(simp) apply(drule sym) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp) done nominal_primrec ANDLEFT1 :: "ty \<Rightarrow> ntrm set \<Rightarrow> ntrm set" where "ANDLEFT1 (B AND C) X = { (y):AndL1 (x).M y | x y M. fin (AndL1 (x).M y) y \<and> (x):M \<in> X }" apply(rule TrueI)+ done lemma ANDLEFT1_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>(ANDLEFT1 (A AND B) X)) = ANDLEFT1 (A AND B) (pi\<bullet>X)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>y" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fin.eqvt(1)) apply(simp) apply(rule_tac x="(xb):M" in exI) apply(simp) apply(rule_tac x="(rev pi)\<bullet>((y):AndL1 (xa).M y)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>y" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp) apply(drule_tac pi="rev pi" in fin.eqvt(1)) apply(simp) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp) done lemma ANDLEFT1_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>(ANDLEFT1 (A AND B) X)) = ANDLEFT1 (A AND B) (pi\<bullet>X)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>y" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fin.eqvt(2)) apply(simp) apply(rule_tac x="(xb):M" in exI) apply(simp) apply(rule_tac x="(rev pi)\<bullet>((y):AndL1 (xa).M y)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>y" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fin.eqvt(2)) apply(simp) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: swap_simps) done nominal_primrec ANDLEFT2 :: "ty \<Rightarrow> ntrm set \<Rightarrow> ntrm set" where "ANDLEFT2 (B AND C) X = { (y):AndL2 (x).M y | x y M. fin (AndL2 (x).M y) y \<and> (x):M \<in> X }" apply(rule TrueI)+ done lemma ANDLEFT2_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>(ANDLEFT2 (A AND B) X)) = ANDLEFT2 (A AND B) (pi\<bullet>X)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>y" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fin.eqvt(1)) apply(simp) apply(rule_tac x="(xb):M" in exI) apply(simp) apply(rule_tac x="(rev pi)\<bullet>((y):AndL2 (xa).M y)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>y" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp) apply(drule_tac pi="rev pi" in fin.eqvt(1)) apply(simp) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp) done lemma ANDLEFT2_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>(ANDLEFT2 (A AND B) X)) = ANDLEFT2 (A AND B) (pi\<bullet>X)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>y" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fin.eqvt(2)) apply(simp) apply(rule_tac x="(xb):M" in exI) apply(simp) apply(rule_tac x="(rev pi)\<bullet>((y):AndL2 (xa).M y)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>y" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fin.eqvt(2)) apply(simp) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: swap_simps) done nominal_primrec ORLEFT :: "ty \<Rightarrow> ntrm set \<Rightarrow> ntrm set \<Rightarrow> ntrm set" where "ORLEFT (B OR C) X Y = { (z):OrL (x).M (y).N z | x y z M N. fin (OrL (x).M (y).N z) z \<and> (x):M \<in> X \<and> (y):N \<in> Y }" apply(rule TrueI)+ done lemma ORLEFT_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>(ORLEFT (A OR B) X Y)) = ORLEFT (A OR B) (pi\<bullet>X) (pi\<bullet>Y)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>y" in exI) apply(rule_tac x="pi\<bullet>z" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(rule_tac x="pi\<bullet>N" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fin.eqvt(1)) apply(simp) apply(rule conjI) apply(rule_tac x="(xb):M" in exI) apply(simp) apply(rule_tac x="(y):N" in exI) apply(simp) apply(rule_tac x="(rev pi)\<bullet>((z):OrL (xa).M (y).N z)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>y" in exI) apply(rule_tac x="(rev pi)\<bullet>z" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(rule_tac x="(rev pi)\<bullet>N" in exI) apply(simp) apply(drule_tac pi="rev pi" in fin.eqvt(1)) apply(simp) apply(drule sym) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp) done lemma ORLEFT_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>(ORLEFT (A OR B) X Y)) = ORLEFT (A OR B) (pi\<bullet>X) (pi\<bullet>Y)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>y" in exI) apply(rule_tac x="pi\<bullet>z" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(rule_tac x="pi\<bullet>N" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fin.eqvt(2)) apply(simp) apply(rule conjI) apply(rule_tac x="(xb):M" in exI) apply(simp) apply(rule_tac x="(y):N" in exI) apply(simp) apply(rule_tac x="(rev pi)\<bullet>((z):OrL (xa).M (y).N z)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>y" in exI) apply(rule_tac x="(rev pi)\<bullet>z" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(rule_tac x="(rev pi)\<bullet>N" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fin.eqvt(2)) apply(simp) apply(drule sym) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: swap_simps) done nominal_primrec ORRIGHT1 :: "ty \<Rightarrow> ctrm set \<Rightarrow> ctrm set" where "ORRIGHT1 (B OR C) X = { <b>:OrR1 <a>.M b | a b M. fic (OrR1 <a>.M b) b \<and> <a>:M \<in> X }" apply(rule TrueI)+ done lemma ORRIGHT1_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>(ORRIGHT1 (A OR B) X)) = ORRIGHT1 (A OR B) (pi\<bullet>X)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>b" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fic.eqvt(1)) apply(simp) apply(rule_tac x="<a>:M" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>(<b>:OrR1 <a>.M b)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>b" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fic.eqvt(1)) apply(simp) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp add: swap_simps) done lemma ORRIGHT1_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>(ORRIGHT1 (A OR B) X)) = ORRIGHT1 (A OR B) (pi\<bullet>X)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>b" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fic.eqvt(2)) apply(simp) apply(rule_tac x="<a>:M" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>(<b>:OrR1 <a>.M b)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>b" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp) apply(drule_tac pi="rev pi" in fic.eqvt(2)) apply(simp) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp) done nominal_primrec ORRIGHT2 :: "ty \<Rightarrow> ctrm set \<Rightarrow> ctrm set" where "ORRIGHT2 (B OR C) X = { <b>:OrR2 <a>.M b | a b M. fic (OrR2 <a>.M b) b \<and> <a>:M \<in> X }" apply(rule TrueI)+ done lemma ORRIGHT2_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>(ORRIGHT2 (A OR B) X)) = ORRIGHT2 (A OR B) (pi\<bullet>X)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>b" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fic.eqvt(1)) apply(simp) apply(rule_tac x="<a>:M" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>(<b>:OrR2 <a>.M b)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>b" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fic.eqvt(1)) apply(simp) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp add: swap_simps) done lemma ORRIGHT2_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>(ORRIGHT2 (A OR B) X)) = ORRIGHT2 (A OR B) (pi\<bullet>X)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>b" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fic.eqvt(2)) apply(simp) apply(rule_tac x="<a>:M" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>(<b>:OrR2 <a>.M b)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>b" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp) apply(drule_tac pi="rev pi" in fic.eqvt(2)) apply(simp) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp) done nominal_primrec IMPRIGHT :: "ty \<Rightarrow> ntrm set \<Rightarrow> ctrm set \<Rightarrow> ntrm set \<Rightarrow> ctrm set \<Rightarrow> ctrm set" where "IMPRIGHT (B IMP C) X Y Z U= { <b>:ImpR (x).<a>.M b | x a b M. fic (ImpR (x).<a>.M b) b \<and> (\<forall>z P. x\<sharp>(z,P) \<and> (z):P \<in> Z \<longrightarrow> (x):(M{a:=(z).P}) \<in> X) \<and> (\<forall>c Q. a\<sharp>(c,Q) \<and> <c>:Q \<in> U \<longrightarrow> <a>:(M{x:=<c>.Q}) \<in> Y)}" apply(rule TrueI)+ done lemma IMPRIGHT_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>(IMPRIGHT (A IMP B) X Y Z U)) = IMPRIGHT (A IMP B) (pi\<bullet>X) (pi\<bullet>Y) (pi\<bullet>Z) (pi\<bullet>U)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>b" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fic.eqvt(1)) apply(simp) apply(rule conjI) apply(auto)[1] apply(rule_tac x="(xb):(M{a:=((rev pi)\<bullet>z).((rev pi)\<bullet>P)})" in exI) apply(perm_simp add: csubst_eqvt) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp) apply(simp add: fresh_right) apply(auto)[1] apply(rule_tac x="<a>:(M{xb:=<((rev pi)\<bullet>c)>.((rev pi)\<bullet>Q)})" in exI) apply(perm_simp add: nsubst_eqvt) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp add: swap_simps fresh_left) apply(rule_tac x="(rev pi)\<bullet>(<b>:ImpR xa.<a>.M b)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>b" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fic.eqvt(1)) apply(simp add: swap_simps) apply(rule conjI) apply(auto)[1] apply(drule_tac x="pi\<bullet>z" in spec) apply(drule_tac x="pi\<bullet>P" in spec) apply(drule mp) apply(simp add: fresh_right) apply(rule_tac x="(z):P" in exI) apply(simp) apply(auto)[1] apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: csubst_eqvt fresh_right) apply(auto)[1] apply(drule_tac x="pi\<bullet>c" in spec) apply(drule_tac x="pi\<bullet>Q" in spec) apply(drule mp) apply(simp add: swap_simps fresh_left) apply(rule_tac x="<c>:Q" in exI) apply(simp add: swap_simps) apply(auto)[1] apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: nsubst_eqvt) done lemma IMPRIGHT_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>(IMPRIGHT (A IMP B) X Y Z U)) = IMPRIGHT (A IMP B) (pi\<bullet>X) (pi\<bullet>Y) (pi\<bullet>Z) (pi\<bullet>U)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>b" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fic.eqvt(2)) apply(simp) apply(rule conjI) apply(auto)[1] apply(rule_tac x="(xb):(M{a:=((rev pi)\<bullet>z).((rev pi)\<bullet>P)})" in exI) apply(perm_simp add: csubst_eqvt) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: swap_simps fresh_left) apply(auto)[1] apply(rule_tac x="<a>:(M{xb:=<((rev pi)\<bullet>c)>.((rev pi)\<bullet>Q)})" in exI) apply(perm_simp add: nsubst_eqvt) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: fresh_right) apply(rule_tac x="(rev pi)\<bullet>(<b>:ImpR xa.<a>.M b)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>b" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fic.eqvt(2)) apply(simp add: swap_simps) apply(rule conjI) apply(auto)[1] apply(drule_tac x="pi\<bullet>z" in spec) apply(drule_tac x="pi\<bullet>P" in spec) apply(simp add: swap_simps fresh_left) apply(drule mp) apply(rule_tac x="(z):P" in exI) apply(simp add: swap_simps) apply(auto)[1] apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(perm_simp add: csubst_eqvt fresh_right) apply(auto)[1] apply(drule_tac x="pi\<bullet>c" in spec) apply(drule_tac x="pi\<bullet>Q" in spec) apply(simp add: fresh_right) apply(drule mp) apply(rule_tac x="<c>:Q" in exI) apply(simp) apply(auto)[1] apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(perm_simp add: nsubst_eqvt fresh_right) done nominal_primrec IMPLEFT :: "ty \<Rightarrow> ctrm set \<Rightarrow> ntrm set \<Rightarrow> ntrm set" where "IMPLEFT (B IMP C) X Y = { (y):ImpL <a>.M (x).N y | x a y M N. fin (ImpL <a>.M (x).N y) y \<and> <a>:M \<in> X \<and> (x):N \<in> Y }" apply(rule TrueI)+ done lemma IMPLEFT_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>(IMPLEFT (A IMP B) X Y)) = IMPLEFT (A IMP B) (pi\<bullet>X) (pi\<bullet>Y)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>y" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(rule_tac x="pi\<bullet>N" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fin.eqvt(1)) apply(simp) apply(rule conjI) apply(rule_tac x="<a>:M" in exI) apply(simp) apply(rule_tac x="(xb):N" in exI) apply(simp) apply(rule_tac x="(rev pi)\<bullet>((y):ImpL <a>.M (xa).N y)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>y" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(rule_tac x="(rev pi)\<bullet>N" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fin.eqvt(1)) apply(simp) apply(drule sym) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp add: swap_simps) done lemma IMPLEFT_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>(IMPLEFT (A IMP B) X Y)) = IMPLEFT (A IMP B) (pi\<bullet>X) (pi\<bullet>Y)" apply(auto simp add: perm_set_eq) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>y" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(rule_tac x="pi\<bullet>N" in exI) apply(simp) apply(rule conjI) apply(drule_tac pi="pi" in fin.eqvt(2)) apply(simp) apply(rule conjI) apply(rule_tac x="<a>:M" in exI) apply(simp) apply(rule_tac x="(xb):N" in exI) apply(simp) apply(rule_tac x="(rev pi)\<bullet>((y):ImpL <a>.M (xa).N y)" in exI) apply(perm_simp) apply(rule_tac x="(rev pi)\<bullet>xa" in exI) apply(rule_tac x="(rev pi)\<bullet>a" in exI) apply(rule_tac x="(rev pi)\<bullet>y" in exI) apply(rule_tac x="(rev pi)\<bullet>M" in exI) apply(rule_tac x="(rev pi)\<bullet>N" in exI) apply(simp add: swap_simps) apply(drule_tac pi="rev pi" in fin.eqvt(2)) apply(simp) apply(drule sym) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: swap_simps) done lemma sum_cases: shows "(\<exists>y. x=Inl y) \<or> (\<exists>y. x=Inr y)" apply(rule_tac s="x" in sumE) apply(auto) done function NEGc::"ty \<Rightarrow> ntrm set \<Rightarrow> ctrm set" and NEGn::"ty \<Rightarrow> ctrm set \<Rightarrow> ntrm set" where "NEGc (PR A) X = AXIOMSc (PR A) \<union> BINDINGc (PR A) X" | "NEGc (NOT C) X = AXIOMSc (NOT C) \<union> BINDINGc (NOT C) X \<union> NOTRIGHT (NOT C) (lfp (NEGn C \<circ> NEGc C))" | "NEGc (C AND D) X = AXIOMSc (C AND D) \<union> BINDINGc (C AND D) X \<union> ANDRIGHT (C AND D) (NEGc C (lfp (NEGn C \<circ> NEGc C))) (NEGc D (lfp (NEGn D \<circ> NEGc D)))" | "NEGc (C OR D) X = AXIOMSc (C OR D) \<union> BINDINGc (C OR D) X \<union> ORRIGHT1 (C OR D) (NEGc C (lfp (NEGn C \<circ> NEGc C))) \<union> ORRIGHT2 (C OR D) (NEGc D (lfp (NEGn D \<circ> NEGc D)))" | "NEGc (C IMP D) X = AXIOMSc (C IMP D) \<union> BINDINGc (C IMP D) X \<union> IMPRIGHT (C IMP D) (lfp (NEGn C \<circ> NEGc C)) (NEGc D (lfp (NEGn D \<circ> NEGc D))) (lfp (NEGn D \<circ> NEGc D)) (NEGc C (lfp (NEGn C \<circ> NEGc C)))" | "NEGn (PR A) X = AXIOMSn (PR A) \<union> BINDINGn (PR A) X" | "NEGn (NOT C) X = AXIOMSn (NOT C) \<union> BINDINGn (NOT C) X \<union> NOTLEFT (NOT C) (NEGc C (lfp (NEGn C \<circ> NEGc C)))" | "NEGn (C AND D) X = AXIOMSn (C AND D) \<union> BINDINGn (C AND D) X \<union> ANDLEFT1 (C AND D) (lfp (NEGn C \<circ> NEGc C)) \<union> ANDLEFT2 (C AND D) (lfp (NEGn D \<circ> NEGc D))" | "NEGn (C OR D) X = AXIOMSn (C OR D) \<union> BINDINGn (C OR D) X \<union> ORLEFT (C OR D) (lfp (NEGn C \<circ> NEGc C)) (lfp (NEGn D \<circ> NEGc D))" | "NEGn (C IMP D) X = AXIOMSn (C IMP D) \<union> BINDINGn (C IMP D) X \<union> IMPLEFT (C IMP D) (NEGc C (lfp (NEGn C \<circ> NEGc C))) (lfp (NEGn D \<circ> NEGc D))" using ty_cases sum_cases apply(auto simp add: ty.inject) apply(drule_tac x="x" in meta_spec) apply(auto simp add: ty.inject) apply(rotate_tac 10) apply(drule_tac x="a" in meta_spec) apply(auto simp add: ty.inject) apply(blast) apply(blast) apply(blast) apply(rotate_tac 10) apply(drule_tac x="a" in meta_spec) apply(auto simp add: ty.inject) apply(blast) apply(blast) apply(blast) done termination apply(relation "measure (sum_case (size\<circ>fst) (size\<circ>fst))") apply(simp_all) done text {* Candidates *} lemma test1: shows "x\<in>(X\<union>Y) = (x\<in>X \<or> x\<in>Y)" by blast lemma test2: shows "x\<in>(X\<inter>Y) = (x\<in>X \<and> x\<in>Y)" by blast lemma big_inter_eqvt: fixes pi1::"name prm" and X::"('a::pt_name) set set" and pi2::"coname prm" and Y::"('b::pt_coname) set set" shows "(pi1\<bullet>(\<Inter> X)) = \<Inter> (pi1\<bullet>X)" and "(pi2\<bullet>(\<Inter> Y)) = \<Inter> (pi2\<bullet>Y)" apply(auto simp add: perm_set_eq) apply(rule_tac x="(rev pi1)\<bullet>x" in exI) apply(perm_simp) apply(rule ballI) apply(drule_tac x="pi1\<bullet>xa" in spec) apply(auto) apply(drule_tac x="xa" in spec) apply(auto)[1] apply(rule_tac x="(rev pi1)\<bullet>xb" in exI) apply(perm_simp) apply(simp add: pt_set_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp add: pt_set_bij[OF pt_name_inst, OF at_name_inst]) apply(simp add: pt_set_bij1[OF pt_name_inst, OF at_name_inst]) apply(rule_tac x="(rev pi2)\<bullet>x" in exI) apply(perm_simp) apply(rule ballI) apply(drule_tac x="pi2\<bullet>xa" in spec) apply(auto) apply(drule_tac x="xa" in spec) apply(auto)[1] apply(rule_tac x="(rev pi2)\<bullet>xb" in exI) apply(perm_simp) apply(simp add: pt_set_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: pt_set_bij[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: pt_set_bij1[OF pt_coname_inst, OF at_coname_inst]) done lemma lfp_eqvt: fixes pi1::"name prm" and f::"'a set \<Rightarrow> ('a::pt_name) set" and pi2::"coname prm" and g::"'b set \<Rightarrow> ('b::pt_coname) set" shows "pi1\<bullet>(lfp f) = lfp (pi1\<bullet>f)" and "pi2\<bullet>(lfp g) = lfp (pi2\<bullet>g)" apply(simp add: lfp_def) apply(simp add: big_inter_eqvt) apply(simp add: pt_Collect_eqvt[OF pt_name_inst, OF at_name_inst]) apply(subgoal_tac "{u. (pi1\<bullet>f) u \<subseteq> u} = {u. ((rev pi1)\<bullet>((pi1\<bullet>f) u)) \<subseteq> ((rev pi1)\<bullet>u)}") apply(perm_simp) apply(rule Collect_cong) apply(rule iffI) apply(rule subseteq_eqvt(1)[THEN iffD1]) apply(simp add: perm_bool) apply(drule subseteq_eqvt(1)[THEN iffD2]) apply(simp add: perm_bool) apply(simp add: lfp_def) apply(simp add: big_inter_eqvt) apply(simp add: pt_Collect_eqvt[OF pt_coname_inst, OF at_coname_inst]) apply(subgoal_tac "{u. (pi2\<bullet>g) u \<subseteq> u} = {u. ((rev pi2)\<bullet>((pi2\<bullet>g) u)) \<subseteq> ((rev pi2)\<bullet>u)}") apply(perm_simp) apply(rule Collect_cong) apply(rule iffI) apply(rule subseteq_eqvt(2)[THEN iffD1]) apply(simp add: perm_bool) apply(drule subseteq_eqvt(2)[THEN iffD2]) apply(simp add: perm_bool) done abbreviation CANDn::"ty \<Rightarrow> ntrm set" ("\<parallel>'(_')\<parallel>" [60] 60) where "\<parallel>(B)\<parallel> \<equiv> lfp (NEGn B \<circ> NEGc B)" abbreviation CANDc::"ty \<Rightarrow> ctrm set" ("\<parallel><_>\<parallel>" [60] 60) where "\<parallel><B>\<parallel> \<equiv> NEGc B (\<parallel>(B)\<parallel>)" lemma NEGn_decreasing: shows "X\<subseteq>Y \<Longrightarrow> NEGn B Y \<subseteq> NEGn B X" by (nominal_induct B rule: ty.strong_induct) (auto dest: BINDINGn_decreasing) lemma NEGc_decreasing: shows "X\<subseteq>Y \<Longrightarrow> NEGc B Y \<subseteq> NEGc B X" by (nominal_induct B rule: ty.strong_induct) (auto dest: BINDINGc_decreasing) lemma mono_NEGn_NEGc: shows "mono (NEGn B \<circ> NEGc B)" and "mono (NEGc B \<circ> NEGn B)" proof - have "\<forall>X Y. X\<subseteq>Y \<longrightarrow> NEGn B (NEGc B X) \<subseteq> NEGn B (NEGc B Y)" proof (intro strip) fix X::"ntrm set" and Y::"ntrm set" assume "X\<subseteq>Y" then have "NEGc B Y \<subseteq> NEGc B X" by (simp add: NEGc_decreasing) then show "NEGn B (NEGc B X) \<subseteq> NEGn B (NEGc B Y)" by (simp add: NEGn_decreasing) qed then show "mono (NEGn B \<circ> NEGc B)" by (simp add: mono_def) next have "\<forall>X Y. X\<subseteq>Y \<longrightarrow> NEGc B (NEGn B X) \<subseteq> NEGc B (NEGn B Y)" proof (intro strip) fix X::"ctrm set" and Y::"ctrm set" assume "X\<subseteq>Y" then have "NEGn B Y \<subseteq> NEGn B X" by (simp add: NEGn_decreasing) then show "NEGc B (NEGn B X) \<subseteq> NEGc B (NEGn B Y)" by (simp add: NEGc_decreasing) qed then show "mono (NEGc B \<circ> NEGn B)" by (simp add: mono_def) qed lemma NEG_simp: shows "\<parallel><B>\<parallel> = NEGc B (\<parallel>(B)\<parallel>)" and "\<parallel>(B)\<parallel> = NEGn B (\<parallel><B>\<parallel>)" proof - show "\<parallel><B>\<parallel> = NEGc B (\<parallel>(B)\<parallel>)" by simp next have "\<parallel>(B)\<parallel> \<equiv> lfp (NEGn B \<circ> NEGc B)" by simp then have "\<parallel>(B)\<parallel> = (NEGn B \<circ> NEGc B) (\<parallel>(B)\<parallel>)" using mono_NEGn_NEGc def_lfp_unfold by blast then show "\<parallel>(B)\<parallel> = NEGn B (\<parallel><B>\<parallel>)" by simp qed lemma NEG_elim: shows "M \<in> \<parallel><B>\<parallel> \<Longrightarrow> M \<in> NEGc B (\<parallel>(B)\<parallel>)" and "N \<in> \<parallel>(B)\<parallel> \<Longrightarrow> N \<in> NEGn B (\<parallel><B>\<parallel>)" using NEG_simp by (blast)+ lemma NEG_intro: shows "M \<in> NEGc B (\<parallel>(B)\<parallel>) \<Longrightarrow> M \<in> \<parallel><B>\<parallel>" and "N \<in> NEGn B (\<parallel><B>\<parallel>) \<Longrightarrow> N \<in> \<parallel>(B)\<parallel>" using NEG_simp by (blast)+ lemma NEGc_simps: shows "NEGc (PR A) (\<parallel>(PR A)\<parallel>) = AXIOMSc (PR A) \<union> BINDINGc (PR A) (\<parallel>(PR A)\<parallel>)" and "NEGc (NOT C) (\<parallel>(NOT C)\<parallel>) = AXIOMSc (NOT C) \<union> BINDINGc (NOT C) (\<parallel>(NOT C)\<parallel>) \<union> (NOTRIGHT (NOT C) (\<parallel>(C)\<parallel>))" and "NEGc (C AND D) (\<parallel>(C AND D)\<parallel>) = AXIOMSc (C AND D) \<union> BINDINGc (C AND D) (\<parallel>(C AND D)\<parallel>) \<union> (ANDRIGHT (C AND D) (\<parallel><C>\<parallel>) (\<parallel><D>\<parallel>))" and "NEGc (C OR D) (\<parallel>(C OR D)\<parallel>) = AXIOMSc (C OR D) \<union> BINDINGc (C OR D) (\<parallel>(C OR D)\<parallel>) \<union> (ORRIGHT1 (C OR D) (\<parallel><C>\<parallel>)) \<union> (ORRIGHT2 (C OR D) (\<parallel><D>\<parallel>))" and "NEGc (C IMP D) (\<parallel>(C IMP D)\<parallel>) = AXIOMSc (C IMP D) \<union> BINDINGc (C IMP D) (\<parallel>(C IMP D)\<parallel>) \<union> (IMPRIGHT (C IMP D) (\<parallel>(C)\<parallel>) (\<parallel><D>\<parallel>) (\<parallel>(D)\<parallel>) (\<parallel><C>\<parallel>))" by (simp_all only: NEGc.simps) lemma AXIOMS_in_CANDs: shows "AXIOMSn B \<subseteq> (\<parallel>(B)\<parallel>)" and "AXIOMSc B \<subseteq> (\<parallel><B>\<parallel>)" proof - have "AXIOMSn B \<subseteq> NEGn B (\<parallel><B>\<parallel>)" by (nominal_induct B rule: ty.strong_induct) (auto) then show "AXIOMSn B \<subseteq> \<parallel>(B)\<parallel>" using NEG_simp by blast next have "AXIOMSc B \<subseteq> NEGc B (\<parallel>(B)\<parallel>)" by (nominal_induct B rule: ty.strong_induct) (auto) then show "AXIOMSc B \<subseteq> \<parallel><B>\<parallel>" using NEG_simp by blast qed lemma Ax_in_CANDs: shows "(y):Ax x a \<in> \<parallel>(B)\<parallel>" and "<b>:Ax x a \<in> \<parallel><B>\<parallel>" proof - have "(y):Ax x a \<in> AXIOMSn B" by (auto simp add: AXIOMSn_def) also have "AXIOMSn B \<subseteq> \<parallel>(B)\<parallel>" by (rule AXIOMS_in_CANDs) finally show "(y):Ax x a \<in> \<parallel>(B)\<parallel>" by simp next have "<b>:Ax x a \<in> AXIOMSc B" by (auto simp add: AXIOMSc_def) also have "AXIOMSc B \<subseteq> \<parallel><B>\<parallel>" by (rule AXIOMS_in_CANDs) finally show "<b>:Ax x a \<in> \<parallel><B>\<parallel>" by simp qed lemma AXIOMS_eqvt_aux_name: fixes pi::"name prm" shows "M \<in> AXIOMSn B \<Longrightarrow> (pi\<bullet>M) \<in> AXIOMSn B" and "N \<in> AXIOMSc B \<Longrightarrow> (pi\<bullet>N) \<in> AXIOMSc B" apply(auto simp add: AXIOMSn_def AXIOMSc_def) apply(rule_tac x="pi\<bullet>x" in exI) apply(rule_tac x="pi\<bullet>y" in exI) apply(rule_tac x="pi\<bullet>b" in exI) apply(simp) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>y" in exI) apply(rule_tac x="pi\<bullet>b" in exI) apply(simp) done lemma AXIOMS_eqvt_aux_coname: fixes pi::"coname prm" shows "M \<in> AXIOMSn B \<Longrightarrow> (pi\<bullet>M) \<in> AXIOMSn B" and "N \<in> AXIOMSc B \<Longrightarrow> (pi\<bullet>N) \<in> AXIOMSc B" apply(auto simp add: AXIOMSn_def AXIOMSc_def) apply(rule_tac x="pi\<bullet>x" in exI) apply(rule_tac x="pi\<bullet>y" in exI) apply(rule_tac x="pi\<bullet>b" in exI) apply(simp) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>y" in exI) apply(rule_tac x="pi\<bullet>b" in exI) apply(simp) done lemma AXIOMS_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>AXIOMSn B) = AXIOMSn B" and "(pi\<bullet>AXIOMSc B) = AXIOMSc B" apply(auto) apply(simp add: pt_set_bij1a[OF pt_name_inst, OF at_name_inst]) apply(drule_tac pi="pi" in AXIOMS_eqvt_aux_name(1)) apply(perm_simp) apply(drule_tac pi="rev pi" in AXIOMS_eqvt_aux_name(1)) apply(simp add: pt_set_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp add: pt_set_bij1a[OF pt_name_inst, OF at_name_inst]) apply(drule_tac pi="pi" in AXIOMS_eqvt_aux_name(2)) apply(perm_simp) apply(drule_tac pi="rev pi" in AXIOMS_eqvt_aux_name(2)) apply(simp add: pt_set_bij1[OF pt_name_inst, OF at_name_inst]) done lemma AXIOMS_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>AXIOMSn B) = AXIOMSn B" and "(pi\<bullet>AXIOMSc B) = AXIOMSc B" apply(auto) apply(simp add: pt_set_bij1a[OF pt_coname_inst, OF at_coname_inst]) apply(drule_tac pi="pi" in AXIOMS_eqvt_aux_coname(1)) apply(perm_simp) apply(drule_tac pi="rev pi" in AXIOMS_eqvt_aux_coname(1)) apply(simp add: pt_set_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: pt_set_bij1a[OF pt_coname_inst, OF at_coname_inst]) apply(drule_tac pi="pi" in AXIOMS_eqvt_aux_coname(2)) apply(perm_simp) apply(drule_tac pi="rev pi" in AXIOMS_eqvt_aux_coname(2)) apply(simp add: pt_set_bij1[OF pt_coname_inst, OF at_coname_inst]) done lemma BINDING_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>(BINDINGn B X)) = BINDINGn B (pi\<bullet>X)" and "(pi\<bullet>(BINDINGc B Y)) = BINDINGc B (pi\<bullet>Y)" apply(auto simp add: BINDINGn_def BINDINGc_def perm_set_eq) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(auto)[1] apply(drule_tac x="(rev pi)\<bullet>a" in spec) apply(drule_tac x="(rev pi)\<bullet>P" in spec) apply(drule mp) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp) apply(drule_tac ?pi1.0="pi" in SNa_eqvt(1)) apply(perm_simp add: nsubst_eqvt) apply(rule_tac x="(rev pi\<bullet>xa):(rev pi\<bullet>M)" in exI) apply(perm_simp) apply(rule_tac x="rev pi\<bullet>xa" in exI) apply(rule_tac x="rev pi\<bullet>M" in exI) apply(simp) apply(auto)[1] apply(drule_tac x="pi\<bullet>a" in spec) apply(drule_tac x="pi\<bullet>P" in spec) apply(drule mp) apply(force) apply(drule_tac ?pi1.0="rev pi" in SNa_eqvt(1)) apply(perm_simp add: nsubst_eqvt) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(auto)[1] apply(drule_tac x="(rev pi)\<bullet>x" in spec) apply(drule_tac x="(rev pi)\<bullet>P" in spec) apply(drule mp) apply(drule sym) apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp) apply(drule_tac ?pi1.0="pi" in SNa_eqvt(1)) apply(perm_simp add: csubst_eqvt) apply(rule_tac x="<(rev pi\<bullet>a)>:(rev pi\<bullet>M)" in exI) apply(perm_simp) apply(rule_tac x="rev pi\<bullet>a" in exI) apply(rule_tac x="rev pi\<bullet>M" in exI) apply(simp add: swap_simps) apply(auto)[1] apply(drule_tac x="pi\<bullet>x" in spec) apply(drule_tac x="pi\<bullet>P" in spec) apply(drule mp) apply(force) apply(drule_tac ?pi1.0="rev pi" in SNa_eqvt(1)) apply(perm_simp add: csubst_eqvt) done lemma BINDING_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>(BINDINGn B X)) = BINDINGn B (pi\<bullet>X)" and "(pi\<bullet>(BINDINGc B Y)) = BINDINGc B (pi\<bullet>Y)" apply(auto simp add: BINDINGn_def BINDINGc_def perm_set_eq) apply(rule_tac x="pi\<bullet>xb" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(auto)[1] apply(drule_tac x="(rev pi)\<bullet>a" in spec) apply(drule_tac x="(rev pi)\<bullet>P" in spec) apply(drule mp) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp) apply(drule_tac ?pi2.0="pi" in SNa_eqvt(2)) apply(perm_simp add: nsubst_eqvt) apply(rule_tac x="(rev pi\<bullet>xa):(rev pi\<bullet>M)" in exI) apply(perm_simp) apply(rule_tac x="rev pi\<bullet>xa" in exI) apply(rule_tac x="rev pi\<bullet>M" in exI) apply(simp add: swap_simps) apply(auto)[1] apply(drule_tac x="pi\<bullet>a" in spec) apply(drule_tac x="pi\<bullet>P" in spec) apply(drule mp) apply(force) apply(drule_tac ?pi2.0="rev pi" in SNa_eqvt(2)) apply(perm_simp add: nsubst_eqvt) apply(rule_tac x="pi\<bullet>a" in exI) apply(rule_tac x="pi\<bullet>M" in exI) apply(simp) apply(auto)[1] apply(drule_tac x="(rev pi)\<bullet>x" in spec) apply(drule_tac x="(rev pi)\<bullet>P" in spec) apply(drule mp) apply(drule sym) apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst]) apply(simp) apply(drule_tac ?pi2.0="pi" in SNa_eqvt(2)) apply(perm_simp add: csubst_eqvt) apply(rule_tac x="<(rev pi\<bullet>a)>:(rev pi\<bullet>M)" in exI) apply(perm_simp) apply(rule_tac x="rev pi\<bullet>a" in exI) apply(rule_tac x="rev pi\<bullet>M" in exI) apply(simp) apply(auto)[1] apply(drule_tac x="pi\<bullet>x" in spec) apply(drule_tac x="pi\<bullet>P" in spec) apply(drule mp) apply(force) apply(drule_tac ?pi2.0="rev pi" in SNa_eqvt(2)) apply(perm_simp add: csubst_eqvt) done lemma CAND_eqvt_name: fixes pi::"name prm" shows "(pi\<bullet>(\<parallel>(B)\<parallel>)) = (\<parallel>(B)\<parallel>)" and "(pi\<bullet>(\<parallel><B>\<parallel>)) = (\<parallel><B>\<parallel>)" proof (nominal_induct B rule: ty.strong_induct) case (PR X) { case 1 show ?case apply - apply(simp add: lfp_eqvt) apply(simp add: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"]) apply(simp add: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name) apply(perm_simp) done next case 2 show ?case apply - apply(simp only: NEGc_simps) apply(simp add: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name) apply(simp add: lfp_eqvt) apply(simp add: comp_def) apply(simp add: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"]) apply(simp add: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name) apply(perm_simp) done } next case (NOT B) have ih1: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact have ih2: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact have g: "pi\<bullet>(\<parallel>(NOT B)\<parallel>) = (\<parallel>(NOT B)\<parallel>)" apply - apply(simp only: lfp_eqvt) apply(simp only: comp_def) apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"]) apply(simp only: NEGc.simps NEGn.simps) apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name NOTRIGHT_eqvt_name NOTLEFT_eqvt_name) apply(perm_simp add: ih1 ih2) done { case 1 show ?case by (rule g) next case 2 show ?case by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name NOTRIGHT_eqvt_name ih1 ih2 g) } next case (AND A B) have ih1: "pi\<bullet>(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact have ih2: "pi\<bullet>(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact have ih3: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact have ih4: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact have g: "pi\<bullet>(\<parallel>(A AND B)\<parallel>) = (\<parallel>(A AND B)\<parallel>)" apply - apply(simp only: lfp_eqvt) apply(simp only: comp_def) apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"]) apply(simp only: NEGc.simps NEGn.simps) apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name ANDRIGHT_eqvt_name ANDLEFT2_eqvt_name ANDLEFT1_eqvt_name) apply(perm_simp add: ih1 ih2 ih3 ih4) done { case 1 show ?case by (rule g) next case 2 show ?case by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name ANDRIGHT_eqvt_name ANDLEFT1_eqvt_name ANDLEFT2_eqvt_name ih1 ih2 ih3 ih4 g) } next case (OR A B) have ih1: "pi\<bullet>(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact have ih2: "pi\<bullet>(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact have ih3: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact have ih4: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact have g: "pi\<bullet>(\<parallel>(A OR B)\<parallel>) = (\<parallel>(A OR B)\<parallel>)" apply - apply(simp only: lfp_eqvt) apply(simp only: comp_def) apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"]) apply(simp only: NEGc.simps NEGn.simps) apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name ORRIGHT1_eqvt_name ORRIGHT2_eqvt_name ORLEFT_eqvt_name) apply(perm_simp add: ih1 ih2 ih3 ih4) done { case 1 show ?case by (rule g) next case 2 show ?case by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name ORRIGHT1_eqvt_name ORRIGHT2_eqvt_name ORLEFT_eqvt_name ih1 ih2 ih3 ih4 g) } next case (IMP A B) have ih1: "pi\<bullet>(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact have ih2: "pi\<bullet>(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact have ih3: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact have ih4: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact have g: "pi\<bullet>(\<parallel>(A IMP B)\<parallel>) = (\<parallel>(A IMP B)\<parallel>)" apply - apply(simp only: lfp_eqvt) apply(simp only: comp_def) apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"]) apply(simp only: NEGc.simps NEGn.simps) apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name IMPRIGHT_eqvt_name IMPLEFT_eqvt_name) apply(perm_simp add: ih1 ih2 ih3 ih4) done { case 1 show ?case by (rule g) next case 2 show ?case by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name IMPRIGHT_eqvt_name IMPLEFT_eqvt_name ih1 ih2 ih3 ih4 g) } qed lemma CAND_eqvt_coname: fixes pi::"coname prm" shows "(pi\<bullet>(\<parallel>(B)\<parallel>)) = (\<parallel>(B)\<parallel>)" and "(pi\<bullet>(\<parallel><B>\<parallel>)) = (\<parallel><B>\<parallel>)" proof (nominal_induct B rule: ty.strong_induct) case (PR X) { case 1 show ?case apply - apply(simp add: lfp_eqvt) apply(simp add: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"]) apply(simp add: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname) apply(perm_simp) done next case 2 show ?case apply - apply(simp only: NEGc_simps) apply(simp add: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname) apply(simp add: lfp_eqvt) apply(simp add: comp_def) apply(simp add: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"]) apply(simp add: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname) apply(perm_simp) done } next case (NOT B) have ih1: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact have ih2: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact have g: "pi\<bullet>(\<parallel>(NOT B)\<parallel>) = (\<parallel>(NOT B)\<parallel>)" apply - apply(simp only: lfp_eqvt) apply(simp only: comp_def) apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"]) apply(simp only: NEGc.simps NEGn.simps) apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname NOTRIGHT_eqvt_coname NOTLEFT_eqvt_coname) apply(perm_simp add: ih1 ih2) done { case 1 show ?case by (rule g) next case 2 show ?case by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname NOTRIGHT_eqvt_coname ih1 ih2 g) } next case (AND A B) have ih1: "pi\<bullet>(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact have ih2: "pi\<bullet>(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact have ih3: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact have ih4: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact have g: "pi\<bullet>(\<parallel>(A AND B)\<parallel>) = (\<parallel>(A AND B)\<parallel>)" apply - apply(simp only: lfp_eqvt) apply(simp only: comp_def) apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"]) apply(simp only: NEGc.simps NEGn.simps) apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname ANDRIGHT_eqvt_coname ANDLEFT2_eqvt_coname ANDLEFT1_eqvt_coname) apply(perm_simp add: ih1 ih2 ih3 ih4) done { case 1 show ?case by (rule g) next case 2 show ?case by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname ANDRIGHT_eqvt_coname ANDLEFT1_eqvt_coname ANDLEFT2_eqvt_coname ih1 ih2 ih3 ih4 g) } next case (OR A B) have ih1: "pi\<bullet>(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact have ih2: "pi\<bullet>(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact have ih3: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact have ih4: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact have g: "pi\<bullet>(\<parallel>(A OR B)\<parallel>) = (\<parallel>(A OR B)\<parallel>)" apply - apply(simp only: lfp_eqvt) apply(simp only: comp_def) apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"]) apply(simp only: NEGc.simps NEGn.simps) apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname ORRIGHT1_eqvt_coname ORRIGHT2_eqvt_coname ORLEFT_eqvt_coname) apply(perm_simp add: ih1 ih2 ih3 ih4) done { case 1 show ?case by (rule g) next case 2 show ?case by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname ORRIGHT1_eqvt_coname ORRIGHT2_eqvt_coname ORLEFT_eqvt_coname ih1 ih2 ih3 ih4 g) } next case (IMP A B) have ih1: "pi\<bullet>(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact have ih2: "pi\<bullet>(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact have ih3: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact have ih4: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact have g: "pi\<bullet>(\<parallel>(A IMP B)\<parallel>) = (\<parallel>(A IMP B)\<parallel>)" apply - apply(simp only: lfp_eqvt) apply(simp only: comp_def) apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"]) apply(simp only: NEGc.simps NEGn.simps) apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname IMPRIGHT_eqvt_coname IMPLEFT_eqvt_coname) apply(perm_simp add: ih1 ih2 ih3 ih4) done { case 1 show ?case by (rule g) next case 2 show ?case by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname IMPRIGHT_eqvt_coname IMPLEFT_eqvt_coname ih1 ih2 ih3 ih4 g) } qed text {* Elimination rules for the set-operators *} lemma BINDINGc_elim: assumes a: "<a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>)" shows "\<forall>x P. ((x):P)\<in>(\<parallel>(B)\<parallel>) \<longrightarrow> SNa (M{a:=(x).P})" using a apply(auto simp add: BINDINGc_def) apply(auto simp add: ctrm.inject alpha) apply(drule_tac x="[(a,aa)]\<bullet>x" in spec) apply(drule_tac x="[(a,aa)]\<bullet>P" in spec) apply(drule mp) apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname) apply(drule_tac ?pi2.0="[(a,aa)]" in SNa_eqvt(2)) apply(perm_simp add: csubst_eqvt) done lemma BINDINGn_elim: assumes a: "(x):M \<in> BINDINGn B (\<parallel><B>\<parallel>)" shows "\<forall>c P. (<c>:P)\<in>(\<parallel><B>\<parallel>) \<longrightarrow> SNa (M{x:=<c>.P})" using a apply(auto simp add: BINDINGn_def) apply(auto simp add: ntrm.inject alpha) apply(drule_tac x="[(x,xa)]\<bullet>c" in spec) apply(drule_tac x="[(x,xa)]\<bullet>P" in spec) apply(drule mp) apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name) apply(drule_tac ?pi1.0="[(x,xa)]" in SNa_eqvt(1)) apply(perm_simp add: nsubst_eqvt) done lemma NOTRIGHT_elim: assumes a: "<a>:M \<in> NOTRIGHT (NOT B) (\<parallel>(B)\<parallel>)" obtains x' M' where "M = NotR (x').M' a" and "fic (NotR (x').M' a) a" and "(x'):M' \<in> (\<parallel>(B)\<parallel>)" using a apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="[(a,aa)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) done lemma NOTLEFT_elim: assumes a: "(x):M \<in> NOTLEFT (NOT B) (\<parallel><B>\<parallel>)" obtains a' M' where "M = NotL <a'>.M' x" and "fin (NotL <a'>.M' x) x" and "<a'>:M' \<in> (\<parallel><B>\<parallel>)" using a apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(x,xa)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) done lemma ANDRIGHT_elim: assumes a: "<a>:M \<in> ANDRIGHT (B AND C) (\<parallel><B>\<parallel>) (\<parallel><C>\<parallel>)" obtains d' M' e' N' where "M = AndR <d'>.M' <e'>.N' a" and "fic (AndR <d'>.M' <e'>.N' a) a" and "<d'>:M' \<in> (\<parallel><B>\<parallel>)" and "<e'>:N' \<in> (\<parallel><C>\<parallel>)" using a apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm fresh_atm) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="[(a,c)]\<bullet>M" in meta_spec) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="[(a,c)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,c)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(a,c)]" and x="<a>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(case_tac "a=b") apply(simp) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="[(b,c)]\<bullet>M" in meta_spec) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="[(b,c)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(b,c)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(b,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(b,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(case_tac "c=b") apply(simp) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(a,b)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="[(a,c)]\<bullet>M" in meta_spec) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(a,c)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,c)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(a,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(case_tac "a=aa") apply(simp) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="[(aa,c)]\<bullet>M" in meta_spec) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="[(aa,c)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(aa,c)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(aa,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(aa,c)]" and x="<aa>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(case_tac "c=aa") apply(simp) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(a,aa)]\<bullet>M" in meta_spec) apply(drule_tac x="aa" in meta_spec) apply(drule_tac x="[(a,aa)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" and x="<a>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(drule_tac x="aa" in meta_spec) apply(drule_tac x="[(a,c)]\<bullet>M" in meta_spec) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="[(a,c)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,c)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(a,c)]" and x="<a>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(case_tac "a=aa") apply(simp) apply(case_tac "aa=b") apply(simp) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="[(b,c)]\<bullet>M" in meta_spec) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="[(b,c)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(b,c)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(b,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(b,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(case_tac "c=b") apply(simp) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(aa,b)]\<bullet>M" in meta_spec) apply(drule_tac x="aa" in meta_spec) apply(drule_tac x="[(aa,b)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(aa,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(aa,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(aa,b)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="[(aa,c)]\<bullet>M" in meta_spec) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(aa,c)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(aa,c)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(aa,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(aa,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(case_tac "c=aa") apply(simp) apply(case_tac "a=b") apply(simp) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(b,aa)]\<bullet>M" in meta_spec) apply(drule_tac x="aa" in meta_spec) apply(drule_tac x="[(b,aa)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(b,aa)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(b,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(b,aa)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(case_tac "aa=b") apply(simp) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(a,b)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(a,aa)]\<bullet>M" in meta_spec) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(a,aa)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(case_tac "a=b") apply(simp) apply(drule_tac x="aa" in meta_spec) apply(drule_tac x="[(b,c)]\<bullet>M" in meta_spec) apply(drule_tac x="c" in meta_spec) apply(drule_tac x="[(b,c)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(b,c)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(b,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(b,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(case_tac "c=b") apply(simp) apply(drule_tac x="aa" in meta_spec) apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(a,b)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(drule_tac x="aa" in meta_spec) apply(drule_tac x="[(a,c)]\<bullet>M" in meta_spec) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(a,c)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,c)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule meta_mp) apply(drule_tac pi="[(a,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) done lemma ANDLEFT1_elim: assumes a: "(x):M \<in> ANDLEFT1 (B AND C) (\<parallel>(B)\<parallel>)" obtains x' M' where "M = AndL1 (x').M' x" and "fin (AndL1 (x').M' x) x" and "(x'):M' \<in> (\<parallel>(B)\<parallel>)" using a apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(case_tac "x=xa") apply(simp) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(xa,y)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(xa,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(xa,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(case_tac "y=xa") apply(simp) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="[(x,xa)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(drule_tac x="xa" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) done lemma ANDLEFT2_elim: assumes a: "(x):M \<in> ANDLEFT2 (B AND C) (\<parallel>(C)\<parallel>)" obtains x' M' where "M = AndL2 (x').M' x" and "fin (AndL2 (x').M' x) x" and "(x'):M' \<in> (\<parallel>(C)\<parallel>)" using a apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(case_tac "x=xa") apply(simp) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(xa,y)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(xa,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(xa,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(case_tac "y=xa") apply(simp) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="[(x,xa)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(drule_tac x="xa" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) done lemma ORRIGHT1_elim: assumes a: "<a>:M \<in> ORRIGHT1 (B OR C) (\<parallel><B>\<parallel>)" obtains a' M' where "M = OrR1 <a'>.M' a" and "fic (OrR1 <a'>.M' a) a" and "<a'>:M' \<in> (\<parallel><B>\<parallel>)" using a apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(case_tac "a=aa") apply(simp) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(aa,b)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(aa,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(aa,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(case_tac "b=aa") apply(simp) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(a,aa)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(drule_tac x="aa" in meta_spec) apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) done lemma ORRIGHT2_elim: assumes a: "<a>:M \<in> ORRIGHT2 (B OR C) (\<parallel><C>\<parallel>)" obtains a' M' where "M = OrR2 <a'>.M' a" and "fic (OrR2 <a'>.M' a) a" and "<a'>:M' \<in> (\<parallel><C>\<parallel>)" using a apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(case_tac "a=aa") apply(simp) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(aa,b)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(aa,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(aa,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(case_tac "b=aa") apply(simp) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(a,aa)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) apply(simp) apply(drule_tac x="aa" in meta_spec) apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(simp) done lemma ORLEFT_elim: assumes a: "(x):M \<in> ORLEFT (B OR C) (\<parallel>(B)\<parallel>) (\<parallel>(C)\<parallel>)" obtains y' M' z' N' where "M = OrL (y').M' (z').N' x" and "fin (OrL (y').M' (z').N' x) x" and "(y'):M' \<in> (\<parallel>(B)\<parallel>)" and "(z'):N' \<in> (\<parallel>(C)\<parallel>)" using a apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm fresh_atm) apply(drule_tac x="z" in meta_spec) apply(drule_tac x="[(x,z)]\<bullet>M" in meta_spec) apply(drule_tac x="z" in meta_spec) apply(drule_tac x="[(x,z)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,z)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(x,z)]" and x="(x):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(case_tac "x=y") apply(simp) apply(drule_tac x="z" in meta_spec) apply(drule_tac x="[(y,z)]\<bullet>M" in meta_spec) apply(drule_tac x="z" in meta_spec) apply(drule_tac x="[(y,z)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(y,z)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(y,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(y,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(case_tac "z=y") apply(simp) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(drule_tac x="z" in meta_spec) apply(drule_tac x="[(x,z)]\<bullet>M" in meta_spec) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(x,z)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,z)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(x,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(case_tac "x=xa") apply(simp) apply(drule_tac x="z" in meta_spec) apply(drule_tac x="[(xa,z)]\<bullet>M" in meta_spec) apply(drule_tac x="z" in meta_spec) apply(drule_tac x="[(xa,z)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(xa,z)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(xa,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(xa,z)]" and x="(xa):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(case_tac "z=xa") apply(simp) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="[(x,xa)]\<bullet>M" in meta_spec) apply(drule_tac x="xa" in meta_spec) apply(drule_tac x="[(x,xa)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" and x="(x):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(drule_tac x="xa" in meta_spec) apply(drule_tac x="[(x,z)]\<bullet>M" in meta_spec) apply(drule_tac x="z" in meta_spec) apply(drule_tac x="[(x,z)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,z)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(x,z)]" and x="(x):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(case_tac "x=xa") apply(simp) apply(case_tac "xa=y") apply(simp) apply(drule_tac x="z" in meta_spec) apply(drule_tac x="[(y,z)]\<bullet>M" in meta_spec) apply(drule_tac x="z" in meta_spec) apply(drule_tac x="[(y,z)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(y,z)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(y,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(y,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(case_tac "z=y") apply(simp) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(xa,y)]\<bullet>M" in meta_spec) apply(drule_tac x="xa" in meta_spec) apply(drule_tac x="[(xa,y)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(xa,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(xa,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(xa,y)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(drule_tac x="z" in meta_spec) apply(drule_tac x="[(xa,z)]\<bullet>M" in meta_spec) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(xa,z)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(xa,z)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(xa,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(xa,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(case_tac "z=xa") apply(simp) apply(case_tac "x=y") apply(simp) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(y,xa)]\<bullet>M" in meta_spec) apply(drule_tac x="xa" in meta_spec) apply(drule_tac x="[(y,xa)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(y,xa)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(y,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(y,xa)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(case_tac "xa=y") apply(simp) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="[(x,xa)]\<bullet>M" in meta_spec) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(x,xa)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(case_tac "x=y") apply(simp) apply(drule_tac x="xa" in meta_spec) apply(drule_tac x="[(y,z)]\<bullet>M" in meta_spec) apply(drule_tac x="z" in meta_spec) apply(drule_tac x="[(y,z)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(y,z)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(y,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(y,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(case_tac "z=y") apply(simp) apply(drule_tac x="xa" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(drule_tac x="xa" in meta_spec) apply(drule_tac x="[(x,z)]\<bullet>M" in meta_spec) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(x,z)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,z)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(x,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) done lemma IMPRIGHT_elim: assumes a: "<a>:M \<in> IMPRIGHT (B IMP C) (\<parallel>(B)\<parallel>) (\<parallel><C>\<parallel>) (\<parallel>(C)\<parallel>) (\<parallel><B>\<parallel>)" obtains x' a' M' where "M = ImpR (x').<a'>.M' a" and "fic (ImpR (x').<a'>.M' a) a" and "\<forall>z P. x'\<sharp>(z,P) \<and> (z):P \<in> \<parallel>(C)\<parallel> \<longrightarrow> (x'):(M'{a':=(z).P}) \<in> \<parallel>(B)\<parallel>" and "\<forall>c Q. a'\<sharp>(c,Q) \<and> <c>:Q \<in> \<parallel><B>\<parallel> \<longrightarrow> <a'>:(M'{x':=<c>.Q}) \<in> \<parallel><C>\<parallel>" using a apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec) apply(simp) apply(drule_tac pi="[(a,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(auto)[1] apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule_tac x="z" in spec) apply(drule_tac x="[(a,b)]\<bullet>P" in spec) apply(simp add: fresh_prod fresh_left calc_atm) apply(drule_tac pi="[(a,b)]" and x="(x):M{a:=(z).([(a,b)]\<bullet>P)}" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(perm_simp add: calc_atm csubst_eqvt CAND_eqvt_coname) apply(drule meta_mp) apply(auto)[1] apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname) apply(rotate_tac 2) apply(drule_tac x="[(a,b)]\<bullet>c" in spec) apply(drule_tac x="[(a,b)]\<bullet>Q" in spec) apply(simp add: fresh_prod fresh_left) apply(drule mp) apply(simp add: calc_atm) apply(drule_tac pi="[(a,b)]" and x="<a>:M{x:=<([(a,b)]\<bullet>c)>.([(a,b)]\<bullet>Q)}" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(perm_simp add: nsubst_eqvt CAND_eqvt_coname) apply(simp add: calc_atm) apply(case_tac "a=aa") apply(simp) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="b" in meta_spec) apply(drule_tac x="[(aa,b)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(aa,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(auto)[1] apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule_tac x="z" in spec) apply(drule_tac x="[(a,b)]\<bullet>P" in spec) apply(simp add: fresh_prod fresh_left calc_atm) apply(drule_tac pi="[(a,b)]" and x="(x):M{a:=(z).([(a,b)]\<bullet>P)}" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(perm_simp add: calc_atm csubst_eqvt CAND_eqvt_coname) apply(drule meta_mp) apply(auto)[1] apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname) apply(drule_tac x="[(a,b)]\<bullet>c" in spec) apply(drule_tac x="[(a,b)]\<bullet>Q" in spec) apply(simp) apply(simp add: fresh_prod fresh_left) apply(drule mp) apply(simp add: calc_atm) apply(drule_tac pi="[(a,b)]" and x="<a>:M{x:=<([(a,b)]\<bullet>c)>.([(a,b)]\<bullet>Q)}" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(perm_simp add: nsubst_eqvt CAND_eqvt_coname) apply(simp add: calc_atm) apply(simp) apply(case_tac "b=aa") apply(simp) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(a,aa)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(auto)[1] apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule_tac x="z" in spec) apply(drule_tac x="[(a,aa)]\<bullet>P" in spec) apply(simp add: fresh_prod fresh_left calc_atm) apply(drule_tac pi="[(a,aa)]" and x="(x):M{aa:=(z).([(a,aa)]\<bullet>P)}" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(perm_simp add: calc_atm csubst_eqvt CAND_eqvt_coname) apply(drule meta_mp) apply(auto)[1] apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname) apply(drule_tac x="[(a,aa)]\<bullet>c" in spec) apply(drule_tac x="[(a,aa)]\<bullet>Q" in spec) apply(simp) apply(simp add: fresh_prod fresh_left) apply(drule mp) apply(simp add: calc_atm) apply(drule_tac pi="[(a,aa)]" and x="<aa>:M{x:=<([(a,aa)]\<bullet>c)>.([(a,aa)]\<bullet>Q)}" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(perm_simp add: nsubst_eqvt CAND_eqvt_coname) apply(simp add: calc_atm) apply(simp) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="aa" in meta_spec) apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(a,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(drule meta_mp) apply(auto)[1] apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: calc_atm CAND_eqvt_coname) apply(drule_tac x="z" in spec) apply(drule_tac x="[(a,b)]\<bullet>P" in spec) apply(simp add: fresh_prod fresh_left calc_atm) apply(drule_tac pi="[(a,b)]" and x="(x):M{aa:=(z).([(a,b)]\<bullet>P)}" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(perm_simp add: calc_atm csubst_eqvt CAND_eqvt_coname) apply(drule meta_mp) apply(auto)[1] apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname) apply(drule_tac x="[(a,b)]\<bullet>c" in spec) apply(drule_tac x="[(a,b)]\<bullet>Q" in spec) apply(simp add: fresh_prod fresh_left) apply(drule mp) apply(simp add: calc_atm) apply(drule_tac pi="[(a,b)]" and x="<aa>:M{x:=<([(a,b)]\<bullet>c)>.([(a,b)]\<bullet>Q)}" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(perm_simp add: nsubst_eqvt CAND_eqvt_coname) apply(simp add: calc_atm) done lemma IMPLEFT_elim: assumes a: "(x):M \<in> IMPLEFT (B IMP C) (\<parallel><B>\<parallel>) (\<parallel>(C)\<parallel>)" obtains x' a' M' N' where "M = ImpL <a'>.M' (x').N' x" and "fin (ImpL <a'>.M' (x').N' x) x" and "<a'>:M' \<in> \<parallel><B>\<parallel>" and "(x'):N' \<in> \<parallel>(C)\<parallel>" using a apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" and x="(x):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: calc_atm CAND_eqvt_name) apply(simp) apply(case_tac "x=xa") apply(simp) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(xa,y)]\<bullet>M" in meta_spec) apply(drule_tac x="y" in meta_spec) apply(drule_tac x="[(xa,y)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(xa,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(xa,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(xa,y)]" and x="(xa):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(case_tac "y=xa") apply(simp) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(x,xa)]\<bullet>M" in meta_spec) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="[(x,xa)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" and x="<a>:M" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(x,xa)]" and x="(xa):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) apply(simp) apply(drule_tac x="a" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec) apply(drule_tac x="xa" in meta_spec) apply(drule_tac x="[(x,y)]\<bullet>N" in meta_spec) apply(simp) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(drule meta_mp) apply(drule_tac pi="[(x,y)]" and x="(xa):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: calc_atm CAND_eqvt_name) apply(simp) done lemma CANDs_alpha: shows "<a>:M \<in> (\<parallel><B>\<parallel>) \<Longrightarrow> [a].M = [b].N \<Longrightarrow> <b>:N \<in> (\<parallel><B>\<parallel>)" and "(x):M \<in> (\<parallel>(B)\<parallel>) \<Longrightarrow> [x].M = [y].N \<Longrightarrow> (y):N \<in> (\<parallel>(B)\<parallel>)" apply(auto simp add: alpha) apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(perm_simp add: CAND_eqvt_coname calc_atm) apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: CAND_eqvt_name calc_atm) done lemma CAND_NotR_elim: assumes a: "<a>:NotR (x).M a \<in> (\<parallel><B>\<parallel>)" "<a>:NotR (x).M a \<notin> BINDINGc B (\<parallel>(B)\<parallel>)" shows "\<exists>B'. B = NOT B' \<and> (x):M \<in> (\<parallel>(B')\<parallel>)" using a apply(nominal_induct B rule: ty.strong_induct) apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha) apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm) apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha) done lemma CAND_NotL_elim_aux: assumes a: "(x):NotL <a>.M x \<in> NEGn B (\<parallel><B>\<parallel>)" "(x):NotL <a>.M x \<notin> BINDINGn B (\<parallel><B>\<parallel>)" shows "\<exists>B'. B = NOT B' \<and> <a>:M \<in> (\<parallel><B'>\<parallel>)" using a apply(nominal_induct B rule: ty.strong_induct) apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha) apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm) apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha) done lemmas CAND_NotL_elim = CAND_NotL_elim_aux[OF NEG_elim(2)] lemma CAND_AndR_elim: assumes a: "<a>:AndR <b>.M <c>.N a \<in> (\<parallel><B>\<parallel>)" "<a>:AndR <b>.M <c>.N a \<notin> BINDINGc B (\<parallel>(B)\<parallel>)" shows "\<exists>B1 B2. B = B1 AND B2 \<and> <b>:M \<in> (\<parallel><B1>\<parallel>) \<and> <c>:N \<in> (\<parallel><B2>\<parallel>)" using a apply(nominal_induct B rule: ty.strong_induct) apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha) apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm) apply(drule_tac pi="[(a,ca)]" and x="<a>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(drule_tac pi="[(a,ca)]" and x="<a>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(drule_tac pi="[(a,ca)]" and x="<a>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(case_tac "a=ba") apply(simp) apply(drule_tac pi="[(ba,ca)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(case_tac "ca=ba") apply(simp) apply(drule_tac pi="[(a,ba)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(drule_tac pi="[(a,ca)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(case_tac "a=aa") apply(simp) apply(drule_tac pi="[(aa,ca)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(case_tac "ca=aa") apply(simp) apply(drule_tac pi="[(a,aa)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(drule_tac pi="[(a,ca)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(drule_tac pi="[(a,ca)]" and x="<a>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(case_tac "a=aa") apply(simp) apply(drule_tac pi="[(aa,ca)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(case_tac "ca=aa") apply(simp) apply(drule_tac pi="[(a,aa)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(drule_tac pi="[(a,ca)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(case_tac "a=ba") apply(simp) apply(drule_tac pi="[(ba,ca)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(case_tac "ca=ba") apply(simp) apply(drule_tac pi="[(a,ba)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(drule_tac pi="[(a,ca)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_coname calc_atm) apply(auto intro: CANDs_alpha)[1] done lemma CAND_OrR1_elim: assumes a: "<a>:OrR1 <b>.M a \<in> (\<parallel><B>\<parallel>)" "<a>:OrR1 <b>.M a \<notin> BINDINGc B (\<parallel>(B)\<parallel>)" shows "\<exists>B1 B2. B = B1 OR B2 \<and> <b>:M \<in> (\<parallel><B1>\<parallel>)" using a apply(nominal_induct B rule: ty.strong_induct) apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha) apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm) apply(drule_tac pi="[(a,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha) apply(case_tac "a=aa") apply(simp) apply(drule_tac pi="[(aa,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha) apply(case_tac "ba=aa") apply(simp) apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha) apply(drule_tac pi="[(a,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha) done lemma CAND_OrR2_elim: assumes a: "<a>:OrR2 <b>.M a \<in> (\<parallel><B>\<parallel>)" "<a>:OrR2 <b>.M a \<notin> BINDINGc B (\<parallel>(B)\<parallel>)" shows "\<exists>B1 B2. B = B1 OR B2 \<and> <b>:M \<in> (\<parallel><B2>\<parallel>)" using a apply(nominal_induct B rule: ty.strong_induct) apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha) apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm) apply(drule_tac pi="[(a,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha) apply(case_tac "a=aa") apply(simp) apply(drule_tac pi="[(aa,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha) apply(case_tac "ba=aa") apply(simp) apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha) apply(drule_tac pi="[(a,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha) done lemma CAND_OrL_elim_aux: assumes a: "(x):(OrL (y).M (z).N x) \<in> NEGn B (\<parallel><B>\<parallel>)" "(x):(OrL (y).M (z).N x) \<notin> BINDINGn B (\<parallel><B>\<parallel>)" shows "\<exists>B1 B2. B = B1 OR B2 \<and> (y):M \<in> (\<parallel>(B1)\<parallel>) \<and> (z):N \<in> (\<parallel>(B2)\<parallel>)" using a apply(nominal_induct B rule: ty.strong_induct) apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha) apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm) apply(drule_tac pi="[(x,za)]" and x="(x):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(drule_tac pi="[(x,za)]" and x="(x):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(drule_tac pi="[(x,za)]" and x="(x):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(case_tac "x=ya") apply(simp) apply(drule_tac pi="[(ya,za)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(case_tac "za=ya") apply(simp) apply(drule_tac pi="[(x,ya)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(drule_tac pi="[(x,za)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(case_tac "x=xa") apply(simp) apply(drule_tac pi="[(xa,za)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(case_tac "za=xa") apply(simp) apply(drule_tac pi="[(x,xa)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(drule_tac pi="[(x,za)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(drule_tac pi="[(x,za)]" and x="(x):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(case_tac "x=xa") apply(simp) apply(drule_tac pi="[(xa,za)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(case_tac "za=xa") apply(simp) apply(drule_tac pi="[(x,xa)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(drule_tac pi="[(x,za)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(case_tac "x=ya") apply(simp) apply(drule_tac pi="[(ya,za)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(case_tac "za=ya") apply(simp) apply(drule_tac pi="[(x,ya)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(drule_tac pi="[(x,za)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] done lemmas CAND_OrL_elim = CAND_OrL_elim_aux[OF NEG_elim(2)] lemma CAND_AndL1_elim_aux: assumes a: "(x):(AndL1 (y).M x) \<in> NEGn B (\<parallel><B>\<parallel>)" "(x):(AndL1 (y).M x) \<notin> BINDINGn B (\<parallel><B>\<parallel>)" shows "\<exists>B1 B2. B = B1 AND B2 \<and> (y):M \<in> (\<parallel>(B1)\<parallel>)" using a apply(nominal_induct B rule: ty.strong_induct) apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha) apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm) apply(drule_tac pi="[(x,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha) apply(case_tac "x=xa") apply(simp) apply(drule_tac pi="[(xa,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha) apply(case_tac "ya=xa") apply(simp) apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha) apply(drule_tac pi="[(x,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha) done lemmas CAND_AndL1_elim = CAND_AndL1_elim_aux[OF NEG_elim(2)] lemma CAND_AndL2_elim_aux: assumes a: "(x):(AndL2 (y).M x) \<in> NEGn B (\<parallel><B>\<parallel>)" "(x):(AndL2 (y).M x) \<notin> BINDINGn B (\<parallel><B>\<parallel>)" shows "\<exists>B1 B2. B = B1 AND B2 \<and> (y):M \<in> (\<parallel>(B2)\<parallel>)" using a apply(nominal_induct B rule: ty.strong_induct) apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha) apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm) apply(drule_tac pi="[(x,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha) apply(case_tac "x=xa") apply(simp) apply(drule_tac pi="[(xa,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha) apply(case_tac "ya=xa") apply(simp) apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha) apply(drule_tac pi="[(x,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha) done lemmas CAND_AndL2_elim = CAND_AndL2_elim_aux[OF NEG_elim(2)] lemma CAND_ImpL_elim_aux: assumes a: "(x):(ImpL <a>.M (z).N x) \<in> NEGn B (\<parallel><B>\<parallel>)" "(x):(ImpL <a>.M (z).N x) \<notin> BINDINGn B (\<parallel><B>\<parallel>)" shows "\<exists>B1 B2. B = B1 IMP B2 \<and> <a>:M \<in> (\<parallel><B1>\<parallel>) \<and> (z):N \<in> (\<parallel>(B2)\<parallel>)" using a apply(nominal_induct B rule: ty.strong_induct) apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha) apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm) apply(drule_tac pi="[(x,y)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(drule_tac pi="[(x,y)]" and x="(x):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(drule_tac pi="[(x,y)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(case_tac "x=xa") apply(simp) apply(drule_tac pi="[(xa,y)]" and x="(xa):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(case_tac "y=xa") apply(simp) apply(drule_tac pi="[(x,xa)]" and x="(xa):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] apply(simp) apply(drule_tac pi="[(x,y)]" and x="(xa):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name calc_atm) apply(auto intro: CANDs_alpha)[1] done lemmas CAND_ImpL_elim = CAND_ImpL_elim_aux[OF NEG_elim(2)] lemma CAND_ImpR_elim: assumes a: "<a>:ImpR (x).<b>.M a \<in> (\<parallel><B>\<parallel>)" "<a>:ImpR (x).<b>.M a \<notin> BINDINGc B (\<parallel>(B)\<parallel>)" shows "\<exists>B1 B2. B = B1 IMP B2 \<and> (\<forall>z P. x\<sharp>(z,P) \<and> (z):P \<in> \<parallel>(B2)\<parallel> \<longrightarrow> (x):(M{b:=(z).P}) \<in> \<parallel>(B1)\<parallel>) \<and> (\<forall>c Q. b\<sharp>(c,Q) \<and> <c>:Q \<in> \<parallel><B1>\<parallel> \<longrightarrow> <b>:(M{x:=<c>.Q}) \<in> \<parallel><B2>\<parallel>)" using a apply(nominal_induct B rule: ty.strong_induct) apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha) apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm fresh_prod fresh_bij) apply(generate_fresh "name") apply(generate_fresh "coname") apply(drule_tac a="ca" and z="c" in alpha_name_coname) apply(simp) apply(simp) apply(simp) apply(drule_tac x="[(xa,c)]\<bullet>[(aa,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>z" in spec) apply(drule_tac x="[(xa,c)]\<bullet>[(aa,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>P" in spec) apply(drule mp) apply(rule conjI) apply(auto simp add: calc_atm fresh_prod fresh_atm)[1] apply(rule conjI) apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1] apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(aa,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(aa,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(generate_fresh "name") apply(generate_fresh "coname") apply(drule_tac a="cb" and z="ca" in alpha_name_coname) apply(simp) apply(simp) apply(simp) apply(drule_tac x="[(xa,ca)]\<bullet>[(aa,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>c" in spec) apply(drule_tac x="[(xa,ca)]\<bullet>[(aa,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>Q" in spec) apply(drule mp) apply(rule conjI) apply(auto simp add: calc_atm fresh_prod fresh_atm)[1] apply(rule conjI) apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1] apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(aa,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(aa,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(generate_fresh "name") apply(generate_fresh "coname") apply(drule_tac a="ca" and z="c" in alpha_name_coname) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(auto)[1] apply(simp) apply(drule_tac x="[(a,ba)]\<bullet>[(xa,c)]\<bullet>[(ba,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>z" in spec) apply(drule_tac x="[(a,ba)]\<bullet>[(xa,c)]\<bullet>[(ba,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>P" in spec) apply(drule mp) apply(rule conjI) apply(auto simp add: calc_atm fresh_prod fresh_atm)[1] apply(rule conjI) apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1] apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(ba,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,ba)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,ba)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(ba,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(generate_fresh "name") apply(generate_fresh "coname") apply(drule_tac a="cb" and z="ca" in alpha_name_coname) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(auto)[1] apply(simp) apply(drule_tac x="[(a,ba)]\<bullet>[(xa,ca)]\<bullet>[(ba,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>c" in spec) apply(drule_tac x="[(a,ba)]\<bullet>[(xa,ca)]\<bullet>[(ba,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>Q" in spec) apply(drule mp) apply(rule conjI) apply(auto simp add: calc_atm fresh_prod fresh_atm)[1] apply(rule conjI) apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1] apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(ba,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,ba)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,ba)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(ba,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(case_tac "a=aa") apply(simp) apply(generate_fresh "name") apply(generate_fresh "coname") apply(drule_tac a="ca" and z="c" in alpha_name_coname) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(auto)[1] apply(simp) apply(drule_tac x="[(aa,ba)]\<bullet>[(xa,c)]\<bullet>[(ba,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>z" in spec) apply(drule_tac x="[(aa,ba)]\<bullet>[(xa,c)]\<bullet>[(ba,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>P" in spec) apply(drule mp) apply(rule conjI) apply(auto simp add: calc_atm fresh_prod fresh_atm)[1] apply(rule conjI) apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1] apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(ba,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(aa,ba)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(aa,ba)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(ba,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(simp) apply(case_tac "ba=aa") apply(simp) apply(generate_fresh "name") apply(generate_fresh "coname") apply(drule_tac a="ca" and z="c" in alpha_name_coname) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(auto)[1] apply(simp) apply(drule_tac x="[(a,aa)]\<bullet>[(xa,c)]\<bullet>[(a,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>z" in spec) apply(drule_tac x="[(a,aa)]\<bullet>[(xa,c)]\<bullet>[(a,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>P" in spec) apply(drule mp) apply(rule conjI) apply(auto simp add: calc_atm fresh_prod fresh_atm)[1] apply(rule conjI) apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1] apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,aa)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,aa)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(a,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(simp) apply(generate_fresh "name") apply(generate_fresh "coname") apply(drule_tac a="ca" and z="c" in alpha_name_coname) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(auto)[1] apply(simp) apply(drule_tac x="[(a,ba)]\<bullet>[(xa,c)]\<bullet>[(aa,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>z" in spec) apply(drule_tac x="[(a,ba)]\<bullet>[(xa,c)]\<bullet>[(aa,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>P" in spec) apply(drule mp) apply(rule conjI) apply(auto simp add: calc_atm fresh_prod fresh_atm)[1] apply(rule conjI) apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1] apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(aa,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,ba)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,ba)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(aa,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(case_tac "a=aa") apply(simp) apply(generate_fresh "name") apply(generate_fresh "coname") apply(drule_tac a="cb" and z="ca" in alpha_name_coname) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(auto)[1] apply(simp) apply(drule_tac x="[(aa,ba)]\<bullet>[(xa,ca)]\<bullet>[(ba,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>c" in spec) apply(drule_tac x="[(aa,ba)]\<bullet>[(xa,ca)]\<bullet>[(ba,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>Q" in spec) apply(drule mp) apply(rule conjI) apply(auto simp add: calc_atm fresh_prod fresh_atm)[1] apply(rule conjI) apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1] apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(ba,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(aa,ba)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(aa,ba)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(ba,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(simp) apply(case_tac "ba=aa") apply(simp) apply(generate_fresh "name") apply(generate_fresh "coname") apply(drule_tac a="cb" and z="ca" in alpha_name_coname) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(auto)[1] apply(simp) apply(drule_tac x="[(a,aa)]\<bullet>[(xa,ca)]\<bullet>[(a,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>c" in spec) apply(drule_tac x="[(a,aa)]\<bullet>[(xa,ca)]\<bullet>[(a,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>Q" in spec) apply(drule mp) apply(rule conjI) apply(auto simp add: calc_atm fresh_prod fresh_atm)[1] apply(rule conjI) apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1] apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,aa)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,aa)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(a,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(simp) apply(generate_fresh "name") apply(generate_fresh "coname") apply(drule_tac a="cb" and z="ca" in alpha_name_coname) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(simp add: fresh_left calc_atm fresh_prod fresh_atm) apply(auto)[1] apply(simp) apply(drule_tac x="[(a,ba)]\<bullet>[(xa,ca)]\<bullet>[(aa,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>c" in spec) apply(drule_tac x="[(a,ba)]\<bullet>[(xa,ca)]\<bullet>[(aa,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>Q" in spec) apply(drule mp) apply(rule conjI) apply(auto simp add: calc_atm fresh_prod fresh_atm)[1] apply(rule conjI) apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1] apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(aa,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,ba)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(a,ba)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(aa,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst]) apply(simp add: CAND_eqvt_name CAND_eqvt_coname) apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst]) apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) done text {* Main lemma 1 *} lemma AXIOMS_imply_SNa: shows "<a>:M \<in> AXIOMSc B \<Longrightarrow> SNa M" and "(x):M \<in> AXIOMSn B \<Longrightarrow> SNa M" apply - apply(auto simp add: AXIOMSn_def AXIOMSc_def ntrm.inject ctrm.inject alpha) apply(rule Ax_in_SNa)+ done lemma BINDING_imply_SNa: shows "<a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>) \<Longrightarrow> SNa M" and "(x):M \<in> BINDINGn B (\<parallel><B>\<parallel>) \<Longrightarrow> SNa M" apply - apply(auto simp add: BINDINGn_def BINDINGc_def ntrm.inject ctrm.inject alpha) apply(drule_tac x="x" in spec) apply(drule_tac x="Ax x a" in spec) apply(drule mp) apply(rule Ax_in_CANDs) apply(drule a_star_preserves_SNa) apply(rule subst_with_ax2) apply(simp add: crename_id) apply(drule_tac x="x" in spec) apply(drule_tac x="Ax x aa" in spec) apply(drule mp) apply(rule Ax_in_CANDs) apply(drule a_star_preserves_SNa) apply(rule subst_with_ax2) apply(simp add: crename_id SNa_eqvt) apply(drule_tac x="a" in spec) apply(drule_tac x="Ax x a" in spec) apply(drule mp) apply(rule Ax_in_CANDs) apply(drule a_star_preserves_SNa) apply(rule subst_with_ax1) apply(simp add: nrename_id) apply(drule_tac x="a" in spec) apply(drule_tac x="Ax xa a" in spec) apply(drule mp) apply(rule Ax_in_CANDs) apply(drule a_star_preserves_SNa) apply(rule subst_with_ax1) apply(simp add: nrename_id SNa_eqvt) done lemma CANDs_imply_SNa: shows "<a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> SNa M" and "(x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> SNa M" proof(induct B arbitrary: a x M rule: ty.induct) case (PR X) { case 1 have "<a>:M \<in> \<parallel><PR X>\<parallel>" by fact then have "<a>:M \<in> NEGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp then have "<a>:M \<in> AXIOMSc (PR X) \<union> BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp moreover { assume "<a>:M \<in> AXIOMSc (PR X)" then have "SNa M" by (simp add: AXIOMS_imply_SNa) } moreover { assume "<a>:M \<in> BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" then have "SNa M" by (simp add: BINDING_imply_SNa) } ultimately show "SNa M" by blast next case 2 have "(x):M \<in> (\<parallel>(PR X)\<parallel>)" by fact then have "(x):M \<in> NEGn (PR X) (\<parallel><PR X>\<parallel>)" using NEG_simp by blast then have "(x):M \<in> AXIOMSn (PR X) \<union> BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" by simp moreover { assume "(x):M \<in> AXIOMSn (PR X)" then have "SNa M" by (simp add: AXIOMS_imply_SNa) } moreover { assume "(x):M \<in> BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" then have "SNa M" by (simp only: BINDING_imply_SNa) } ultimately show "SNa M" by blast } next case (NOT B) have ih1: "\<And>a M. <a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> SNa M" by fact have ih2: "\<And>x M. (x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> SNa M" by fact { case 1 have "<a>:M \<in> (\<parallel><NOT B>\<parallel>)" by fact then have "<a>:M \<in> NEGc (NOT B) (\<parallel>(NOT B)\<parallel>)" by simp then have "<a>:M \<in> AXIOMSc (NOT B) \<union> BINDINGc (NOT B) (\<parallel>(NOT B)\<parallel>) \<union> NOTRIGHT (NOT B) (\<parallel>(B)\<parallel>)" by simp moreover { assume "<a>:M \<in> AXIOMSc (NOT B)" then have "SNa M" by (simp add: AXIOMS_imply_SNa) } moreover { assume "<a>:M \<in> BINDINGc (NOT B) (\<parallel>(NOT B)\<parallel>)" then have "SNa M" by (simp only: BINDING_imply_SNa) } moreover { assume "<a>:M \<in> NOTRIGHT (NOT B) (\<parallel>(B)\<parallel>)" then obtain x' M' where eq: "M = NotR (x').M' a" and "(x'):M' \<in> (\<parallel>(B)\<parallel>)" using NOTRIGHT_elim by blast then have "SNa M'" using ih2 by blast then have "SNa M" using eq by (simp add: NotR_in_SNa) } ultimately show "SNa M" by blast next case 2 have "(x):M \<in> (\<parallel>(NOT B)\<parallel>)" by fact then have "(x):M \<in> NEGn (NOT B) (\<parallel><NOT B>\<parallel>)" using NEG_simp by blast then have "(x):M \<in> AXIOMSn (NOT B) \<union> BINDINGn (NOT B) (\<parallel><NOT B>\<parallel>) \<union> NOTLEFT (NOT B) (\<parallel><B>\<parallel>)" by (simp only: NEGn.simps) moreover { assume "(x):M \<in> AXIOMSn (NOT B)" then have "SNa M" by (simp add: AXIOMS_imply_SNa) } moreover { assume "(x):M \<in> BINDINGn (NOT B) (\<parallel><NOT B>\<parallel>)" then have "SNa M" by (simp only: BINDING_imply_SNa) } moreover { assume "(x):M \<in> NOTLEFT (NOT B) (\<parallel><B>\<parallel>)" then obtain a' M' where eq: "M = NotL <a'>.M' x" and "<a'>:M' \<in> (\<parallel><B>\<parallel>)" using NOTLEFT_elim by blast then have "SNa M'" using ih1 by blast then have "SNa M" using eq by (simp add: NotL_in_SNa) } ultimately show "SNa M" by blast } next case (AND A B) have ih1: "\<And>a M. <a>:M \<in> \<parallel><A>\<parallel> \<Longrightarrow> SNa M" by fact have ih2: "\<And>x M. (x):M \<in> \<parallel>(A)\<parallel> \<Longrightarrow> SNa M" by fact have ih3: "\<And>a M. <a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> SNa M" by fact have ih4: "\<And>x M. (x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> SNa M" by fact { case 1 have "<a>:M \<in> (\<parallel><A AND B>\<parallel>)" by fact then have "<a>:M \<in> NEGc (A AND B) (\<parallel>(A AND B)\<parallel>)" by simp then have "<a>:M \<in> AXIOMSc (A AND B) \<union> BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>) \<union> ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" by simp moreover { assume "<a>:M \<in> AXIOMSc (A AND B)" then have "SNa M" by (simp add: AXIOMS_imply_SNa) } moreover { assume "<a>:M \<in> BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)" then have "SNa M" by (simp only: BINDING_imply_SNa) } moreover { assume "<a>:M \<in> ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" then obtain a' M' b' N' where eq: "M = AndR <a'>.M' <b'>.N' a" and "<a'>:M' \<in> (\<parallel><A>\<parallel>)" and "<b'>:N' \<in> (\<parallel><B>\<parallel>)" by (erule_tac ANDRIGHT_elim, blast) then have "SNa M'" and "SNa N'" using ih1 ih3 by blast+ then have "SNa M" using eq by (simp add: AndR_in_SNa) } ultimately show "SNa M" by blast next case 2 have "(x):M \<in> (\<parallel>(A AND B)\<parallel>)" by fact then have "(x):M \<in> NEGn (A AND B) (\<parallel><A AND B>\<parallel>)" using NEG_simp by blast then have "(x):M \<in> AXIOMSn (A AND B) \<union> BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>) \<union> ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>) \<union> ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" by (simp only: NEGn.simps) moreover { assume "(x):M \<in> AXIOMSn (A AND B)" then have "SNa M" by (simp add: AXIOMS_imply_SNa) } moreover { assume "(x):M \<in> BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)" then have "SNa M" by (simp only: BINDING_imply_SNa) } moreover { assume "(x):M \<in> ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>)" then obtain x' M' where eq: "M = AndL1 (x').M' x" and "(x'):M' \<in> (\<parallel>(A)\<parallel>)" using ANDLEFT1_elim by blast then have "SNa M'" using ih2 by blast then have "SNa M" using eq by (simp add: AndL1_in_SNa) } moreover { assume "(x):M \<in> ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" then obtain x' M' where eq: "M = AndL2 (x').M' x" and "(x'):M' \<in> (\<parallel>(B)\<parallel>)" using ANDLEFT2_elim by blast then have "SNa M'" using ih4 by blast then have "SNa M" using eq by (simp add: AndL2_in_SNa) } ultimately show "SNa M" by blast } next case (OR A B) have ih1: "\<And>a M. <a>:M \<in> \<parallel><A>\<parallel> \<Longrightarrow> SNa M" by fact have ih2: "\<And>x M. (x):M \<in> \<parallel>(A)\<parallel> \<Longrightarrow> SNa M" by fact have ih3: "\<And>a M. <a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> SNa M" by fact have ih4: "\<And>x M. (x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> SNa M" by fact { case 1 have "<a>:M \<in> (\<parallel><A OR B>\<parallel>)" by fact then have "<a>:M \<in> NEGc (A OR B) (\<parallel>(A OR B)\<parallel>)" by simp then have "<a>:M \<in> AXIOMSc (A OR B) \<union> BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>) \<union> ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>) \<union> ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" by simp moreover { assume "<a>:M \<in> AXIOMSc (A OR B)" then have "SNa M" by (simp add: AXIOMS_imply_SNa) } moreover { assume "<a>:M \<in> BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)" then have "SNa M" by (simp only: BINDING_imply_SNa) } moreover { assume "<a>:M \<in> ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>)" then obtain a' M' where eq: "M = OrR1 <a'>.M' a" and "<a'>:M' \<in> (\<parallel><A>\<parallel>)" by (erule_tac ORRIGHT1_elim, blast) then have "SNa M'" using ih1 by blast then have "SNa M" using eq by (simp add: OrR1_in_SNa) } moreover { assume "<a>:M \<in> ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" then obtain a' M' where eq: "M = OrR2 <a'>.M' a" and "<a'>:M' \<in> (\<parallel><B>\<parallel>)" using ORRIGHT2_elim by blast then have "SNa M'" using ih3 by blast then have "SNa M" using eq by (simp add: OrR2_in_SNa) } ultimately show "SNa M" by blast next case 2 have "(x):M \<in> (\<parallel>(A OR B)\<parallel>)" by fact then have "(x):M \<in> NEGn (A OR B) (\<parallel><A OR B>\<parallel>)" using NEG_simp by blast then have "(x):M \<in> AXIOMSn (A OR B) \<union> BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>) \<union> ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" by (simp only: NEGn.simps) moreover { assume "(x):M \<in> AXIOMSn (A OR B)" then have "SNa M" by (simp add: AXIOMS_imply_SNa) } moreover { assume "(x):M \<in> BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)" then have "SNa M" by (simp only: BINDING_imply_SNa) } moreover { assume "(x):M \<in> ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" then obtain x' M' y' N' where eq: "M = OrL (x').M' (y').N' x" and "(x'):M' \<in> (\<parallel>(A)\<parallel>)" and "(y'):N' \<in> (\<parallel>(B)\<parallel>)" by (erule_tac ORLEFT_elim, blast) then have "SNa M'" and "SNa N'" using ih2 ih4 by blast+ then have "SNa M" using eq by (simp add: OrL_in_SNa) } ultimately show "SNa M" by blast } next case (IMP A B) have ih1: "\<And>a M. <a>:M \<in> \<parallel><A>\<parallel> \<Longrightarrow> SNa M" by fact have ih2: "\<And>x M. (x):M \<in> \<parallel>(A)\<parallel> \<Longrightarrow> SNa M" by fact have ih3: "\<And>a M. <a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> SNa M" by fact have ih4: "\<And>x M. (x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> SNa M" by fact { case 1 have "<a>:M \<in> (\<parallel><A IMP B>\<parallel>)" by fact then have "<a>:M \<in> NEGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" by simp then have "<a>:M \<in> AXIOMSc (A IMP B) \<union> BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>) \<union> IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" by simp moreover { assume "<a>:M \<in> AXIOMSc (A IMP B)" then have "SNa M" by (simp add: AXIOMS_imply_SNa) } moreover { assume "<a>:M \<in> BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" then have "SNa M" by (simp only: BINDING_imply_SNa) } moreover { assume "<a>:M \<in> IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" then obtain x' a' M' where eq: "M = ImpR (x').<a'>.M' a" and imp: "\<forall>z P. x'\<sharp>(z,P) \<and> (z):P \<in> \<parallel>(B)\<parallel> \<longrightarrow> (x'):(M'{a':=(z).P}) \<in> \<parallel>(A)\<parallel>" by (erule_tac IMPRIGHT_elim, blast) obtain z::"name" where fs: "z\<sharp>x'" by (rule_tac exists_fresh, rule fin_supp, blast) have "(z):Ax z a'\<in> \<parallel>(B)\<parallel>" by (simp add: Ax_in_CANDs) with imp fs have "(x'):(M'{a':=(z).Ax z a'}) \<in> \<parallel>(A)\<parallel>" by (simp add: fresh_prod fresh_atm) then have "SNa (M'{a':=(z).Ax z a'})" using ih2 by blast moreover have "M'{a':=(z).Ax z a'} \<longrightarrow>\<^isub>a* M'[a'\<turnstile>c>a']" by (simp add: subst_with_ax2) ultimately have "SNa (M'[a'\<turnstile>c>a'])" by (simp add: a_star_preserves_SNa) then have "SNa M'" by (simp add: crename_id) then have "SNa M" using eq by (simp add: ImpR_in_SNa) } ultimately show "SNa M" by blast next case 2 have "(x):M \<in> (\<parallel>(A IMP B)\<parallel>)" by fact then have "(x):M \<in> NEGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" using NEG_simp by blast then have "(x):M \<in> AXIOMSn (A IMP B) \<union> BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>) \<union> IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" by (simp only: NEGn.simps) moreover { assume "(x):M \<in> AXIOMSn (A IMP B)" then have "SNa M" by (simp add: AXIOMS_imply_SNa) } moreover { assume "(x):M \<in> BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" then have "SNa M" by (simp only: BINDING_imply_SNa) } moreover { assume "(x):M \<in> IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" then obtain a' M' y' N' where eq: "M = ImpL <a'>.M' (y').N' x" and "<a'>:M' \<in> (\<parallel><A>\<parallel>)" and "(y'):N' \<in> (\<parallel>(B)\<parallel>)" by (erule_tac IMPLEFT_elim, blast) then have "SNa M'" and "SNa N'" using ih1 ih4 by blast+ then have "SNa M" using eq by (simp add: ImpL_in_SNa) } ultimately show "SNa M" by blast } qed text {* Main lemma 2 *} lemma AXIOMS_preserved: shows "<a>:M \<in> AXIOMSc B \<Longrightarrow> M \<longrightarrow>\<^isub>a* M' \<Longrightarrow> <a>:M' \<in> AXIOMSc B" and "(x):M \<in> AXIOMSn B \<Longrightarrow> M \<longrightarrow>\<^isub>a* M' \<Longrightarrow> (x):M' \<in> AXIOMSn B" apply(simp_all add: AXIOMSc_def AXIOMSn_def) apply(auto simp add: ntrm.inject ctrm.inject alpha) apply(drule ax_do_not_a_star_reduce) apply(auto) apply(drule ax_do_not_a_star_reduce) apply(auto) apply(drule ax_do_not_a_star_reduce) apply(auto) apply(drule ax_do_not_a_star_reduce) apply(auto) done lemma BINDING_preserved: shows "<a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>) \<Longrightarrow> M \<longrightarrow>\<^isub>a* M' \<Longrightarrow> <a>:M' \<in> BINDINGc B (\<parallel>(B)\<parallel>)" and "(x):M \<in> BINDINGn B (\<parallel><B>\<parallel>) \<Longrightarrow> M \<longrightarrow>\<^isub>a* M' \<Longrightarrow> (x):M' \<in> BINDINGn B (\<parallel><B>\<parallel>)" proof - assume red: "M \<longrightarrow>\<^isub>a* M'" assume asm: "<a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>)" { fix x::"name" and P::"trm" from asm have "((x):P) \<in> (\<parallel>(B)\<parallel>) \<Longrightarrow> SNa (M{a:=(x).P})" by (simp add: BINDINGc_elim) moreover have "M{a:=(x).P} \<longrightarrow>\<^isub>a* M'{a:=(x).P}" using red by (simp add: a_star_subst2) ultimately have "((x):P) \<in> (\<parallel>(B)\<parallel>) \<Longrightarrow> SNa (M'{a:=(x).P})" by (simp add: a_star_preserves_SNa) } then show "<a>:M' \<in> BINDINGc B (\<parallel>(B)\<parallel>)" by (auto simp add: BINDINGc_def) next assume red: "M \<longrightarrow>\<^isub>a* M'" assume asm: "(x):M \<in> BINDINGn B (\<parallel><B>\<parallel>)" { fix c::"coname" and P::"trm" from asm have "(<c>:P) \<in> (\<parallel><B>\<parallel>) \<Longrightarrow> SNa (M{x:=<c>.P})" by (simp add: BINDINGn_elim) moreover have "M{x:=<c>.P} \<longrightarrow>\<^isub>a* M'{x:=<c>.P}" using red by (simp add: a_star_subst1) ultimately have "(<c>:P) \<in> (\<parallel><B>\<parallel>) \<Longrightarrow> SNa (M'{x:=<c>.P})" by (simp add: a_star_preserves_SNa) } then show "(x):M' \<in> BINDINGn B (\<parallel><B>\<parallel>)" by (auto simp add: BINDINGn_def) qed lemma CANDs_preserved: shows "<a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> M \<longrightarrow>\<^isub>a* M' \<Longrightarrow> <a>:M' \<in> \<parallel><B>\<parallel>" and "(x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> M \<longrightarrow>\<^isub>a* M' \<Longrightarrow> (x):M' \<in> \<parallel>(B)\<parallel>" proof(nominal_induct B arbitrary: a x M M' rule: ty.strong_induct) case (PR X) { case 1 have asm: "M \<longrightarrow>\<^isub>a* M'" by fact have "<a>:M \<in> \<parallel><PR X>\<parallel>" by fact then have "<a>:M \<in> NEGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp then have "<a>:M \<in> AXIOMSc (PR X) \<union> BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp moreover { assume "<a>:M \<in> AXIOMSc (PR X)" then have "<a>:M' \<in> AXIOMSc (PR X)" using asm by (simp only: AXIOMS_preserved) } moreover { assume "<a>:M \<in> BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" then have "<a>:M' \<in> BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" using asm by (simp add: BINDING_preserved) } ultimately have "<a>:M' \<in> AXIOMSc (PR X) \<union> BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" by blast then have "<a>:M' \<in> NEGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp then show "<a>:M' \<in> (\<parallel><PR X>\<parallel>)" using NEG_simp by blast next case 2 have asm: "M \<longrightarrow>\<^isub>a* M'" by fact have "(x):M \<in> \<parallel>(PR X)\<parallel>" by fact then have "(x):M \<in> NEGn (PR X) (\<parallel><PR X>\<parallel>)" using NEG_simp by blast then have "(x):M \<in> AXIOMSn (PR X) \<union> BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" by simp moreover { assume "(x):M \<in> AXIOMSn (PR X)" then have "(x):M' \<in> AXIOMSn (PR X)" using asm by (simp only: AXIOMS_preserved) } moreover { assume "(x):M \<in> BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" then have "(x):M' \<in> BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" using asm by (simp only: BINDING_preserved) } ultimately have "(x):M' \<in> AXIOMSn (PR X) \<union> BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" by blast then have "(x):M' \<in> NEGn (PR X) (\<parallel><PR X>\<parallel>)" by simp then show "(x):M' \<in> (\<parallel>(PR X)\<parallel>)" using NEG_simp by blast } next case (IMP A B) have ih1: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><A>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><A>\<parallel>" by fact have ih2: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(A)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(A)\<parallel>" by fact have ih3: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><B>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><B>\<parallel>" by fact have ih4: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(B)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(B)\<parallel>" by fact { case 1 have asm: "M \<longrightarrow>\<^isub>a* M'" by fact have "<a>:M \<in> \<parallel><A IMP B>\<parallel>" by fact then have "<a>:M \<in> NEGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" by simp then have "<a>:M \<in> AXIOMSc (A IMP B) \<union> BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>) \<union> IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" by simp moreover { assume "<a>:M \<in> AXIOMSc (A IMP B)" then have "<a>:M' \<in> AXIOMSc (A IMP B)" using asm by (simp only: AXIOMS_preserved) } moreover { assume "<a>:M \<in> BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" then have "<a>:M' \<in> BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" using asm by (simp only: BINDING_preserved) } moreover { assume "<a>:M \<in> IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" then obtain x' a' N' where eq: "M = ImpR (x').<a'>.N' a" and fic: "fic (ImpR (x').<a'>.N' a) a" and imp1: "\<forall>z P. x'\<sharp>(z,P) \<and> (z):P \<in> \<parallel>(B)\<parallel> \<longrightarrow> (x'):(N'{a':=(z).P}) \<in> \<parallel>(A)\<parallel>" and imp2: "\<forall>c Q. a'\<sharp>(c,Q) \<and> <c>:Q \<in> \<parallel><A>\<parallel> \<longrightarrow> <a'>:(N'{x':=<c>.Q}) \<in> \<parallel><B>\<parallel>" using IMPRIGHT_elim by blast from eq asm obtain N'' where eq': "M' = ImpR (x').<a'>.N'' a" and red: "N' \<longrightarrow>\<^isub>a* N''" using a_star_redu_ImpR_elim by (blast) from imp1 have "\<forall>z P. x'\<sharp>(z,P) \<and> (z):P \<in> \<parallel>(B)\<parallel> \<longrightarrow> (x'):(N''{a':=(z).P}) \<in> \<parallel>(A)\<parallel>" using red ih2 apply(auto) apply(drule_tac x="z" in spec) apply(drule_tac x="P" in spec) apply(simp) apply(drule_tac a_star_subst2) apply(blast) done moreover from imp2 have "\<forall>c Q. a'\<sharp>(c,Q) \<and> <c>:Q \<in> \<parallel><A>\<parallel> \<longrightarrow> <a'>:(N''{x':=<c>.Q}) \<in> \<parallel><B>\<parallel>" using red ih3 apply(auto) apply(drule_tac x="c" in spec) apply(drule_tac x="Q" in spec) apply(simp) apply(drule_tac a_star_subst1) apply(blast) done moreover from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce) ultimately have "<a>:M' \<in> IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" using eq' by auto } ultimately have "<a>:M' \<in> AXIOMSc (A IMP B) \<union> BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>) \<union> IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" by blast then have "<a>:M' \<in> NEGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" by simp then show "<a>:M' \<in> (\<parallel><A IMP B>\<parallel>)" using NEG_simp by blast next case 2 have asm: "M \<longrightarrow>\<^isub>a* M'" by fact have "(x):M \<in> \<parallel>(A IMP B)\<parallel>" by fact then have "(x):M \<in> NEGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" using NEG_simp by blast then have "(x):M \<in> AXIOMSn (A IMP B) \<union> BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>) \<union> IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" by simp moreover { assume "(x):M \<in> AXIOMSn (A IMP B)" then have "(x):M' \<in> AXIOMSn (A IMP B)" using asm by (simp only: AXIOMS_preserved) } moreover { assume "(x):M \<in> BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" then have "(x):M' \<in> BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" using asm by (simp only: BINDING_preserved) } moreover { assume "(x):M \<in> IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" then obtain a' T' y' N' where eq: "M = ImpL <a'>.T' (y').N' x" and fin: "fin (ImpL <a'>.T' (y').N' x) x" and imp1: "<a'>:T' \<in> \<parallel><A>\<parallel>" and imp2: "(y'):N' \<in> \<parallel>(B)\<parallel>" by (erule_tac IMPLEFT_elim, blast) from eq asm obtain T'' N'' where eq': "M' = ImpL <a'>.T'' (y').N'' x" and red1: "T' \<longrightarrow>\<^isub>a* T''" and red2: "N' \<longrightarrow>\<^isub>a* N''" using a_star_redu_ImpL_elim by blast from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce) moreover from imp1 red1 have "<a'>:T'' \<in> \<parallel><A>\<parallel>" using ih1 by simp moreover from imp2 red2 have "(y'):N'' \<in> \<parallel>(B)\<parallel>" using ih4 by simp ultimately have "(x):M' \<in> IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" using eq' by (simp, blast) } ultimately have "(x):M' \<in> AXIOMSn (A IMP B) \<union> BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>) \<union> IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" by blast then have "(x):M' \<in> NEGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" by simp then show "(x):M' \<in> (\<parallel>(A IMP B)\<parallel>)" using NEG_simp by blast } next case (AND A B) have ih1: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><A>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><A>\<parallel>" by fact have ih2: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(A)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(A)\<parallel>" by fact have ih3: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><B>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><B>\<parallel>" by fact have ih4: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(B)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(B)\<parallel>" by fact { case 1 have asm: "M \<longrightarrow>\<^isub>a* M'" by fact have "<a>:M \<in> \<parallel><A AND B>\<parallel>" by fact then have "<a>:M \<in> NEGc (A AND B) (\<parallel>(A AND B)\<parallel>)" by simp then have "<a>:M \<in> AXIOMSc (A AND B) \<union> BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>) \<union> ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" by simp moreover { assume "<a>:M \<in> AXIOMSc (A AND B)" then have "<a>:M' \<in> AXIOMSc (A AND B)" using asm by (simp only: AXIOMS_preserved) } moreover { assume "<a>:M \<in> BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)" then have "<a>:M' \<in> BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)" using asm by (simp only: BINDING_preserved) } moreover { assume "<a>:M \<in> ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" then obtain a' T' b' N' where eq: "M = AndR <a'>.T' <b'>.N' a" and fic: "fic (AndR <a'>.T' <b'>.N' a) a" and imp1: "<a'>:T' \<in> \<parallel><A>\<parallel>" and imp2: "<b'>:N' \<in> \<parallel><B>\<parallel>" using ANDRIGHT_elim by blast from eq asm obtain T'' N'' where eq': "M' = AndR <a'>.T'' <b'>.N'' a" and red1: "T' \<longrightarrow>\<^isub>a* T''" and red2: "N' \<longrightarrow>\<^isub>a* N''" using a_star_redu_AndR_elim by blast from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce) moreover from imp1 red1 have "<a'>:T'' \<in> \<parallel><A>\<parallel>" using ih1 by simp moreover from imp2 red2 have "<b'>:N'' \<in> \<parallel><B>\<parallel>" using ih3 by simp ultimately have "<a>:M' \<in> ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" using eq' by (simp, blast) } ultimately have "<a>:M' \<in> AXIOMSc (A AND B) \<union> BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>) \<union> ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" by blast then have "<a>:M' \<in> NEGc (A AND B) (\<parallel>(A AND B)\<parallel>)" by simp then show "<a>:M' \<in> (\<parallel><A AND B>\<parallel>)" using NEG_simp by blast next case 2 have asm: "M \<longrightarrow>\<^isub>a* M'" by fact have "(x):M \<in> \<parallel>(A AND B)\<parallel>" by fact then have "(x):M \<in> NEGn (A AND B) (\<parallel><A AND B>\<parallel>)" using NEG_simp by blast then have "(x):M \<in> AXIOMSn (A AND B) \<union> BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>) \<union> ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>) \<union> ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" by simp moreover { assume "(x):M \<in> AXIOMSn (A AND B)" then have "(x):M' \<in> AXIOMSn (A AND B)" using asm by (simp only: AXIOMS_preserved) } moreover { assume "(x):M \<in> BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)" then have "(x):M' \<in> BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)" using asm by (simp only: BINDING_preserved) } moreover { assume "(x):M \<in> ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>)" then obtain y' N' where eq: "M = AndL1 (y').N' x" and fin: "fin (AndL1 (y').N' x) x" and imp: "(y'):N' \<in> \<parallel>(A)\<parallel>" by (erule_tac ANDLEFT1_elim, blast) from eq asm obtain N'' where eq': "M' = AndL1 (y').N'' x" and red1: "N' \<longrightarrow>\<^isub>a* N''" using a_star_redu_AndL1_elim by blast from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce) moreover from imp red1 have "(y'):N'' \<in> \<parallel>(A)\<parallel>" using ih2 by simp ultimately have "(x):M' \<in> ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>)" using eq' by (simp, blast) } moreover { assume "(x):M \<in> ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" then obtain y' N' where eq: "M = AndL2 (y').N' x" and fin: "fin (AndL2 (y').N' x) x" and imp: "(y'):N' \<in> \<parallel>(B)\<parallel>" by (erule_tac ANDLEFT2_elim, blast) from eq asm obtain N'' where eq': "M' = AndL2 (y').N'' x" and red1: "N' \<longrightarrow>\<^isub>a* N''" using a_star_redu_AndL2_elim by blast from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce) moreover from imp red1 have "(y'):N'' \<in> \<parallel>(B)\<parallel>" using ih4 by simp ultimately have "(x):M' \<in> ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" using eq' by (simp, blast) } ultimately have "(x):M' \<in> AXIOMSn (A AND B) \<union> BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>) \<union> ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>) \<union> ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" by blast then have "(x):M' \<in> NEGn (A AND B) (\<parallel><A AND B>\<parallel>)" by simp then show "(x):M' \<in> (\<parallel>(A AND B)\<parallel>)" using NEG_simp by blast } next case (OR A B) have ih1: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><A>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><A>\<parallel>" by fact have ih2: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(A)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(A)\<parallel>" by fact have ih3: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><B>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><B>\<parallel>" by fact have ih4: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(B)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(B)\<parallel>" by fact { case 1 have asm: "M \<longrightarrow>\<^isub>a* M'" by fact have "<a>:M \<in> \<parallel><A OR B>\<parallel>" by fact then have "<a>:M \<in> NEGc (A OR B) (\<parallel>(A OR B)\<parallel>)" by simp then have "<a>:M \<in> AXIOMSc (A OR B) \<union> BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>) \<union> ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>) \<union> ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" by simp moreover { assume "<a>:M \<in> AXIOMSc (A OR B)" then have "<a>:M' \<in> AXIOMSc (A OR B)" using asm by (simp only: AXIOMS_preserved) } moreover { assume "<a>:M \<in> BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)" then have "<a>:M' \<in> BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)" using asm by (simp only: BINDING_preserved) } moreover { assume "<a>:M \<in> ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>)" then obtain a' N' where eq: "M = OrR1 <a'>.N' a" and fic: "fic (OrR1 <a'>.N' a) a" and imp1: "<a'>:N' \<in> \<parallel><A>\<parallel>" using ORRIGHT1_elim by blast from eq asm obtain N'' where eq': "M' = OrR1 <a'>.N'' a" and red1: "N' \<longrightarrow>\<^isub>a* N''" using a_star_redu_OrR1_elim by blast from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce) moreover from imp1 red1 have "<a'>:N'' \<in> \<parallel><A>\<parallel>" using ih1 by simp ultimately have "<a>:M' \<in> ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>)" using eq' by (simp, blast) } moreover { assume "<a>:M \<in> ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" then obtain a' N' where eq: "M = OrR2 <a'>.N' a" and fic: "fic (OrR2 <a'>.N' a) a" and imp1: "<a'>:N' \<in> \<parallel><B>\<parallel>" using ORRIGHT2_elim by blast from eq asm obtain N'' where eq': "M' = OrR2 <a'>.N'' a" and red1: "N' \<longrightarrow>\<^isub>a* N''" using a_star_redu_OrR2_elim by blast from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce) moreover from imp1 red1 have "<a'>:N'' \<in> \<parallel><B>\<parallel>" using ih3 by simp ultimately have "<a>:M' \<in> ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" using eq' by (simp, blast) } ultimately have "<a>:M' \<in> AXIOMSc (A OR B) \<union> BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>) \<union> ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>) \<union> ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" by blast then have "<a>:M' \<in> NEGc (A OR B) (\<parallel>(A OR B)\<parallel>)" by simp then show "<a>:M' \<in> (\<parallel><A OR B>\<parallel>)" using NEG_simp by blast next case 2 have asm: "M \<longrightarrow>\<^isub>a* M'" by fact have "(x):M \<in> \<parallel>(A OR B)\<parallel>" by fact then have "(x):M \<in> NEGn (A OR B) (\<parallel><A OR B>\<parallel>)" using NEG_simp by blast then have "(x):M \<in> AXIOMSn (A OR B) \<union> BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>) \<union> ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" by simp moreover { assume "(x):M \<in> AXIOMSn (A OR B)" then have "(x):M' \<in> AXIOMSn (A OR B)" using asm by (simp only: AXIOMS_preserved) } moreover { assume "(x):M \<in> BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)" then have "(x):M' \<in> BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)" using asm by (simp only: BINDING_preserved) } moreover { assume "(x):M \<in> ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" then obtain y' T' z' N' where eq: "M = OrL (y').T' (z').N' x" and fin: "fin (OrL (y').T' (z').N' x) x" and imp1: "(y'):T' \<in> \<parallel>(A)\<parallel>" and imp2: "(z'):N' \<in> \<parallel>(B)\<parallel>" by (erule_tac ORLEFT_elim, blast) from eq asm obtain T'' N'' where eq': "M' = OrL (y').T'' (z').N'' x" and red1: "T' \<longrightarrow>\<^isub>a* T''" and red2: "N' \<longrightarrow>\<^isub>a* N''" using a_star_redu_OrL_elim by blast from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce) moreover from imp1 red1 have "(y'):T'' \<in> \<parallel>(A)\<parallel>" using ih2 by simp moreover from imp2 red2 have "(z'):N'' \<in> \<parallel>(B)\<parallel>" using ih4 by simp ultimately have "(x):M' \<in> ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" using eq' by (simp, blast) } ultimately have "(x):M' \<in> AXIOMSn (A OR B) \<union> BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>) \<union> ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" by blast then have "(x):M' \<in> NEGn (A OR B) (\<parallel><A OR B>\<parallel>)" by simp then show "(x):M' \<in> (\<parallel>(A OR B)\<parallel>)" using NEG_simp by blast } next case (NOT A) have ih1: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><A>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><A>\<parallel>" by fact have ih2: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(A)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(A)\<parallel>" by fact { case 1 have asm: "M \<longrightarrow>\<^isub>a* M'" by fact have "<a>:M \<in> \<parallel><NOT A>\<parallel>" by fact then have "<a>:M \<in> NEGc (NOT A) (\<parallel>(NOT A)\<parallel>)" by simp then have "<a>:M \<in> AXIOMSc (NOT A) \<union> BINDINGc (NOT A) (\<parallel>(NOT A)\<parallel>) \<union> NOTRIGHT (NOT A) (\<parallel>(A)\<parallel>)" by simp moreover { assume "<a>:M \<in> AXIOMSc (NOT A)" then have "<a>:M' \<in> AXIOMSc (NOT A)" using asm by (simp only: AXIOMS_preserved) } moreover { assume "<a>:M \<in> BINDINGc (NOT A) (\<parallel>(NOT A)\<parallel>)" then have "<a>:M' \<in> BINDINGc (NOT A) (\<parallel>(NOT A)\<parallel>)" using asm by (simp only: BINDING_preserved) } moreover { assume "<a>:M \<in> NOTRIGHT (NOT A) (\<parallel>(A)\<parallel>)" then obtain y' N' where eq: "M = NotR (y').N' a" and fic: "fic (NotR (y').N' a) a" and imp: "(y'):N' \<in> \<parallel>(A)\<parallel>" using NOTRIGHT_elim by blast from eq asm obtain N'' where eq': "M' = NotR (y').N'' a" and red: "N' \<longrightarrow>\<^isub>a* N''" using a_star_redu_NotR_elim by blast from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce) moreover from imp red have "(y'):N'' \<in> \<parallel>(A)\<parallel>" using ih2 by simp ultimately have "<a>:M' \<in> NOTRIGHT (NOT A) (\<parallel>(A)\<parallel>)" using eq' by (simp, blast) } ultimately have "<a>:M' \<in> AXIOMSc (NOT A) \<union> BINDINGc (NOT A) (\<parallel>(NOT A)\<parallel>) \<union> NOTRIGHT (NOT A) (\<parallel>(A)\<parallel>)" by blast then have "<a>:M' \<in> NEGc (NOT A) (\<parallel>(NOT A)\<parallel>)" by simp then show "<a>:M' \<in> (\<parallel><NOT A>\<parallel>)" using NEG_simp by blast next case 2 have asm: "M \<longrightarrow>\<^isub>a* M'" by fact have "(x):M \<in> \<parallel>(NOT A)\<parallel>" by fact then have "(x):M \<in> NEGn (NOT A) (\<parallel><NOT A>\<parallel>)" using NEG_simp by blast then have "(x):M \<in> AXIOMSn (NOT A) \<union> BINDINGn (NOT A) (\<parallel><NOT A>\<parallel>) \<union> NOTLEFT (NOT A) (\<parallel><A>\<parallel>)" by simp moreover { assume "(x):M \<in> AXIOMSn (NOT A)" then have "(x):M' \<in> AXIOMSn (NOT A)" using asm by (simp only: AXIOMS_preserved) } moreover { assume "(x):M \<in> BINDINGn (NOT A) (\<parallel><NOT A>\<parallel>)" then have "(x):M' \<in> BINDINGn (NOT A) (\<parallel><NOT A>\<parallel>)" using asm by (simp only: BINDING_preserved) } moreover { assume "(x):M \<in> NOTLEFT (NOT A) (\<parallel><A>\<parallel>)" then obtain a' N' where eq: "M = NotL <a'>.N' x" and fin: "fin (NotL <a'>.N' x) x" and imp: "<a'>:N' \<in> \<parallel><A>\<parallel>" by (erule_tac NOTLEFT_elim, blast) from eq asm obtain N'' where eq': "M' = NotL <a'>.N'' x" and red1: "N' \<longrightarrow>\<^isub>a* N''" using a_star_redu_NotL_elim by blast from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce) moreover from imp red1 have "<a'>:N'' \<in> \<parallel><A>\<parallel>" using ih1 by simp ultimately have "(x):M' \<in> NOTLEFT (NOT A) (\<parallel><A>\<parallel>)" using eq' by (simp, blast) } ultimately have "(x):M' \<in> AXIOMSn (NOT A) \<union> BINDINGn (NOT A) (\<parallel><NOT A>\<parallel>) \<union> NOTLEFT (NOT A) (\<parallel><A>\<parallel>)" by blast then have "(x):M' \<in> NEGn (NOT A) (\<parallel><NOT A>\<parallel>)" by simp then show "(x):M' \<in> (\<parallel>(NOT A)\<parallel>)" using NEG_simp by blast } qed lemma CANDs_preserved_single: shows "<a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> M \<longrightarrow>\<^isub>a M' \<Longrightarrow> <a>:M' \<in> \<parallel><B>\<parallel>" and "(x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> M \<longrightarrow>\<^isub>a M' \<Longrightarrow> (x):M' \<in> \<parallel>(B)\<parallel>" by (auto simp add: a_starI CANDs_preserved) lemma fic_CANDS: assumes a: "\<not>fic M a" and b: "<a>:M \<in> \<parallel><B>\<parallel>" shows "<a>:M \<in> AXIOMSc B \<or> <a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>)" using a b apply(nominal_induct B rule: ty.strong_induct) apply(simp) apply(simp) apply(erule disjE) apply(simp) apply(erule disjE) apply(simp) apply(auto simp add: ctrm.inject)[1] apply(simp add: alpha) apply(erule disjE) apply(simp) apply(auto simp add: calc_atm)[1] apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(simp) apply(erule disjE) apply(simp) apply(erule disjE) apply(simp) apply(auto simp add: ctrm.inject)[1] apply(simp add: alpha) apply(erule disjE) apply(simp) apply(erule conjE)+ apply(simp) apply(drule_tac pi="[(a,c)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(simp) apply(erule disjE) apply(simp) apply(erule disjE) apply(simp) apply(auto simp add: ctrm.inject)[1] apply(simp add: alpha) apply(erule disjE) apply(simp) apply(erule conjE)+ apply(simp) apply(drule_tac pi="[(a,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(simp add: alpha) apply(erule disjE) apply(simp) apply(erule conjE)+ apply(simp) apply(drule_tac pi="[(a,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) apply(simp) apply(erule disjE) apply(simp) apply(erule disjE) apply(simp) apply(auto simp add: ctrm.inject)[1] apply(simp add: alpha) apply(erule disjE) apply(simp) apply(erule conjE)+ apply(simp) apply(drule_tac pi="[(a,b)]" in fic.eqvt(2)) apply(simp add: calc_atm) done lemma fin_CANDS_aux: assumes a: "\<not>fin M x" and b: "(x):M \<in> (NEGn B (\<parallel><B>\<parallel>))" shows "(x):M \<in> AXIOMSn B \<or> (x):M \<in> BINDINGn B (\<parallel><B>\<parallel>)" using a b apply(nominal_induct B rule: ty.strong_induct) apply(simp) apply(simp) apply(erule disjE) apply(simp) apply(erule disjE) apply(simp) apply(auto simp add: ntrm.inject)[1] apply(simp add: alpha) apply(erule disjE) apply(simp) apply(auto simp add: calc_atm)[1] apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(simp) apply(erule disjE) apply(simp) apply(erule disjE) apply(simp) apply(auto simp add: ntrm.inject)[1] apply(simp add: alpha) apply(erule disjE) apply(simp) apply(erule conjE)+ apply(simp) apply(drule_tac pi="[(x,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(simp add: alpha) apply(erule disjE) apply(simp) apply(erule conjE)+ apply(simp) apply(drule_tac pi="[(x,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(simp) apply(erule disjE) apply(simp) apply(erule disjE) apply(simp) apply(auto simp add: ntrm.inject)[1] apply(simp add: alpha) apply(erule disjE) apply(simp) apply(erule conjE)+ apply(simp) apply(drule_tac pi="[(x,z)]" in fin.eqvt(1)) apply(simp add: calc_atm) apply(simp) apply(erule disjE) apply(simp) apply(erule disjE) apply(simp) apply(auto simp add: ntrm.inject)[1] apply(simp add: alpha) apply(erule disjE) apply(simp) apply(erule conjE)+ apply(simp) apply(drule_tac pi="[(x,y)]" in fin.eqvt(1)) apply(simp add: calc_atm) done lemma fin_CANDS: assumes a: "\<not>fin M x" and b: "(x):M \<in> (\<parallel>(B)\<parallel>)" shows "(x):M \<in> AXIOMSn B \<or> (x):M \<in> BINDINGn B (\<parallel><B>\<parallel>)" apply(rule fin_CANDS_aux) apply(rule a) apply(rule NEG_elim) apply(rule b) done lemma BINDING_implies_CAND: shows "<c>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>) \<Longrightarrow> <c>:M \<in> (\<parallel><B>\<parallel>)" and "(x):N \<in> BINDINGn B (\<parallel><B>\<parallel>) \<Longrightarrow> (x):N \<in> (\<parallel>(B)\<parallel>)" apply - apply(nominal_induct B rule: ty.strong_induct) apply(auto) apply(rule NEG_intro) apply(nominal_induct B rule: ty.strong_induct) apply(auto) done end