(* $Id$ *)
theory Weakening
imports "Nominal"
begin
section {* Weakening Example for the Simply-Typed Lambda-Calculus *}
(*================================================================*)
atom_decl name
nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam "\<guillemotleft>name\<guillemotright>lam" ("Lam [_]._" [100,100] 100)
nominal_datatype ty =
TVar "nat"
| TArr "ty" "ty" (infix "\<rightarrow>" 200)
lemma ty_perm[simp]:
fixes pi ::"name prm"
and \<tau> ::"ty"
shows "pi\<bullet>\<tau> = \<tau>"
by (induct \<tau> rule: ty.induct_weak)
(simp_all add: perm_nat_def)
text {* valid contexts *}
inductive2
valid :: "(name\<times>ty) list \<Rightarrow> bool"
where
v1[intro]: "valid []"
| v2[intro]: "\<lbrakk>valid \<Gamma>;a\<sharp>\<Gamma>\<rbrakk>\<Longrightarrow> valid ((a,\<sigma>)#\<Gamma>)"
lemma eqvt_valid:
fixes pi:: "name prm"
assumes a: "valid \<Gamma>"
shows "valid (pi\<bullet>\<Gamma>)"
using a
by (induct)
(auto simp add: fresh_bij)
text{* typing judgements *}
inductive2
typing :: "(name\<times>ty) list\<Rightarrow>lam\<Rightarrow>ty\<Rightarrow>bool" (" _ \<turnstile> _ : _ " [80,80,80] 80)
where
t_Var[intro]: "\<lbrakk>valid \<Gamma>; (a,\<tau>)\<in>set \<Gamma>\<rbrakk>\<Longrightarrow> \<Gamma> \<turnstile> Var a : \<tau>"
| t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : \<tau>\<rightarrow>\<sigma>; \<Gamma> \<turnstile> t2 : \<tau>\<rbrakk>\<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : \<sigma>"
| t_Lam[intro]: "\<lbrakk>a\<sharp>\<Gamma>;((a,\<tau>)#\<Gamma>) \<turnstile> t : \<sigma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam [a].t : \<tau>\<rightarrow>\<sigma>"
lemma eqvt_typing:
fixes pi:: "name prm"
assumes a: "\<Gamma> \<turnstile> t : \<tau>"
shows "(pi\<bullet>\<Gamma>) \<turnstile> (pi\<bullet>t) : \<tau>"
using a
proof (induct)
case (t_Var \<Gamma> a \<tau>)
have "valid (pi\<bullet>\<Gamma>)" by (rule eqvt_valid)
moreover
have "(pi\<bullet>(a,\<tau>))\<in>(pi\<bullet>set \<Gamma>)" by (rule pt_set_bij2[OF pt_name_inst, OF at_name_inst])
ultimately show "(pi\<bullet>\<Gamma>) \<turnstile> (pi\<bullet>Var a) : \<tau>"
using typing.intros by (force simp add: pt_list_set_pi[OF pt_name_inst, symmetric])
next
case (t_Lam a \<Gamma> \<tau> t \<sigma>)
moreover have "(pi\<bullet>a)\<sharp>(pi\<bullet>\<Gamma>)" by (simp add: fresh_bij)
ultimately show "(pi\<bullet>\<Gamma>) \<turnstile> (pi\<bullet>Lam [a].t) :\<tau>\<rightarrow>\<sigma>" by force
qed (auto)
text {* the strong induction principle needs to be derived manually *}
lemma typing_induct[consumes 1, case_names t_Var t_App t_Lam]:
fixes P :: "'a::fs_name\<Rightarrow>(name\<times>ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow>bool"
and \<Gamma> :: "(name\<times>ty) list"
and t :: "lam"
and \<tau> :: "ty"
and x :: "'a::fs_name"
assumes a: "\<Gamma> \<turnstile> t : \<tau>"
and a1: "\<And>\<Gamma> a \<tau> x. \<lbrakk>valid \<Gamma>; (a,\<tau>) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> P x \<Gamma> (Var a) \<tau>"
and a2: "\<And>\<Gamma> \<tau> \<sigma> t1 t2 x.
\<lbrakk>\<Gamma> \<turnstile> t1 : \<tau>\<rightarrow>\<sigma>; (\<And>z. P z \<Gamma> t1 (\<tau>\<rightarrow>\<sigma>)); \<Gamma> \<turnstile> t2 : \<tau>; (\<And>z. P z \<Gamma> t2 \<tau>)\<rbrakk>
\<Longrightarrow> P x \<Gamma> (App t1 t2) \<sigma>"
and a3: "\<And>a \<Gamma> \<tau> \<sigma> t x. \<lbrakk>a\<sharp>x; a\<sharp>\<Gamma>; ((a,\<tau>)#\<Gamma>) \<turnstile> t : \<sigma>; (\<And>z. P z ((a,\<tau>)#\<Gamma>) t \<sigma>)\<rbrakk>
\<Longrightarrow> P x \<Gamma> (Lam [a].t) (\<tau>\<rightarrow>\<sigma>)"
shows "P x \<Gamma> t \<tau>"
proof -
from a have "\<And>(pi::name prm) x. P x (pi\<bullet>\<Gamma>) (pi\<bullet>t) \<tau>"
proof (induct)
case (t_Var \<Gamma> a \<tau>)
have "valid \<Gamma>" by fact
then have "valid (pi\<bullet>\<Gamma>)" by (rule eqvt_valid)
moreover
have "(a,\<tau>)\<in>set \<Gamma>" by fact
then have "pi\<bullet>(a,\<tau>)\<in>pi\<bullet>(set \<Gamma>)" by (simp only: pt_set_bij[OF pt_name_inst, OF at_name_inst])
then have "(pi\<bullet>a,\<tau>)\<in>set (pi\<bullet>\<Gamma>)" by (simp add: pt_list_set_pi[OF pt_name_inst])
ultimately show "P x (pi\<bullet>\<Gamma>) (pi\<bullet>(Var a)) \<tau>" using a1 by simp
next
case (t_App \<Gamma> t1 \<tau> \<sigma> t2)
thus "P x (pi\<bullet>\<Gamma>) (pi\<bullet>(App t1 t2)) \<sigma>" using a2 by (simp, blast intro: eqvt_typing)
next
case (t_Lam a \<Gamma> \<tau> t \<sigma>)
obtain c::"name" where fs: "c\<sharp>(pi\<bullet>a,pi\<bullet>t,pi\<bullet>\<Gamma>,x)" by (rule exists_fresh[OF fs_name1])
let ?sw="[(pi\<bullet>a,c)]"
let ?pi'="?sw@pi"
have f1: "a\<sharp>\<Gamma>" by fact
have f2: "(pi\<bullet>a)\<sharp>(pi\<bullet>\<Gamma>)" using f1 by (simp add: fresh_bij)
have f3: "c\<sharp>?pi'\<bullet>\<Gamma>" using f1 by (auto simp add: pt_name2 fresh_left calc_atm perm_pi_simp)
have pr1: "((a,\<tau>)#\<Gamma>)\<turnstile>t:\<sigma>" by fact
then have "(?pi'\<bullet>((a,\<tau>)#\<Gamma>)) \<turnstile> (?pi'\<bullet>t) : \<sigma>" by (rule eqvt_typing)
then have "((c,\<tau>)#(?pi'\<bullet>\<Gamma>)) \<turnstile> (?pi'\<bullet>t) : \<sigma>" by (simp add: calc_atm)
moreover
have ih1: "\<And>x. P x (?pi'\<bullet>((a,\<tau>)#\<Gamma>)) (?pi'\<bullet>t) \<sigma>" by fact
then have "\<And>x. P x ((c,\<tau>)#(?pi'\<bullet>\<Gamma>)) (?pi'\<bullet>t) \<sigma>" by (simp add: calc_atm)
ultimately have "P x (?pi'\<bullet>\<Gamma>) (Lam [c].(?pi'\<bullet>t)) (\<tau> \<rightarrow> \<sigma>)" using a3 f3 fs by simp
then have "P x (?sw\<bullet>pi\<bullet>\<Gamma>) (?sw\<bullet>(Lam [(pi\<bullet>a)].(pi\<bullet>t))) (\<tau> \<rightarrow> \<sigma>)"
by (simp del: append_Cons add: calc_atm pt_name2)
moreover have "(?sw\<bullet>(pi\<bullet>\<Gamma>)) = (pi\<bullet>\<Gamma>)"
by (rule perm_fresh_fresh) (simp_all add: fs f2)
moreover have "(?sw\<bullet>(Lam [(pi\<bullet>a)].(pi\<bullet>t))) = Lam [(pi\<bullet>a)].(pi\<bullet>t)"
by (rule perm_fresh_fresh) (simp_all add: fs f2 abs_fresh)
ultimately show "P x (pi\<bullet>\<Gamma>) (pi\<bullet>(Lam [a].t)) (\<tau> \<rightarrow> \<sigma>)" by (simp only: , simp)
qed
hence "P x (([]::name prm)\<bullet>\<Gamma>) (([]::name prm)\<bullet>t) \<tau>" by blast
thus "P x \<Gamma> t \<tau>" by simp
qed
text {* definition of a subcontext *}
abbreviation
"sub" :: "(name\<times>ty) list \<Rightarrow> (name\<times>ty) list \<Rightarrow> bool" (" _ \<lless> _ " [80,80] 80) where
"\<Gamma>1 \<lless> \<Gamma>2 \<equiv> \<forall>a \<sigma>. (a,\<sigma>)\<in>set \<Gamma>1 \<longrightarrow> (a,\<sigma>)\<in>set \<Gamma>2"
text {* now it comes: The Weakening Lemma *}
lemma weakening_version1:
assumes a: "\<Gamma>1 \<turnstile> t : \<sigma>"
and b: "valid \<Gamma>2"
and c: "\<Gamma>1 \<lless> \<Gamma>2"
shows "\<Gamma>2 \<turnstile> t:\<sigma>"
using a b c
apply(nominal_induct \<Gamma>1 t \<sigma> avoiding: \<Gamma>2 rule: typing_induct)
apply(auto | atomize)+
(* FIXME: meta-quantifiers seem to be not as "automatic" as object-quantifiers *)
done
lemma weakening_version2:
fixes \<Gamma>1::"(name\<times>ty) list"
and t ::"lam"
and \<tau> ::"ty"
assumes a: "\<Gamma>1 \<turnstile> t:\<sigma>"
and b: "valid \<Gamma>2"
and c: "\<Gamma>1 \<lless> \<Gamma>2"
shows "\<Gamma>2 \<turnstile> t:\<sigma>"
using a b c
proof (nominal_induct \<Gamma>1 t \<sigma> avoiding: \<Gamma>2 rule: typing_induct)
case (t_Var \<Gamma>1 a \<tau>) (* variable case *)
have "\<Gamma>1 \<lless> \<Gamma>2" by fact
moreover
have "valid \<Gamma>2" by fact
moreover
have "(a,\<tau>)\<in> set \<Gamma>1" by fact
ultimately show "\<Gamma>2 \<turnstile> Var a : \<tau>" by auto
next
case (t_Lam a \<Gamma>1 \<tau> \<sigma> t) (* lambda case *)
have vc: "a\<sharp>\<Gamma>2" by fact (* variable convention *)
have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; ((a,\<tau>)#\<Gamma>1) \<lless> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t:\<sigma>" by fact
have "\<Gamma>1 \<lless> \<Gamma>2" by fact
then have "((a,\<tau>)#\<Gamma>1) \<lless> ((a,\<tau>)#\<Gamma>2)" by simp
moreover
have "valid \<Gamma>2" by fact
then have "valid ((a,\<tau>)#\<Gamma>2)" using vc by (simp add: v2)
ultimately have "((a,\<tau>)#\<Gamma>2) \<turnstile> t:\<sigma>" using ih by simp
with vc show "\<Gamma>2 \<turnstile> (Lam [a].t) : \<tau> \<rightarrow> \<sigma>" by auto
qed (auto) (* app case *)
lemma weakening_version3:
assumes a: "\<Gamma>1 \<turnstile> t:\<sigma>"
and b: "valid \<Gamma>2"
and c: "\<Gamma>1 \<lless> \<Gamma>2"
shows "\<Gamma>2 \<turnstile> t:\<sigma>"
using a b c
proof (nominal_induct \<Gamma>1 t \<sigma> avoiding: \<Gamma>2 rule: typing_induct)
case (t_Lam a \<Gamma>1 \<tau> \<sigma> t) (* lambda case *)
have vc: "a\<sharp>\<Gamma>2" by fact (* variable convention *)
have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; ((a,\<tau>)#\<Gamma>1) \<lless> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t:\<sigma>" by fact
have "\<Gamma>1 \<lless> \<Gamma>2" by fact
then have "((a,\<tau>)#\<Gamma>1) \<lless> ((a,\<tau>)#\<Gamma>2)" by simp
moreover
have "valid \<Gamma>2" by fact
then have "valid ((a,\<tau>)#\<Gamma>2)" using vc by (simp add: v2)
ultimately have "((a,\<tau>)#\<Gamma>2) \<turnstile> t:\<sigma>" using ih by simp
with vc show "\<Gamma>2 \<turnstile> (Lam [a].t) : \<tau> \<rightarrow> \<sigma>" by auto
qed (auto) (* app and var case *)
text{* The original induction principle for the typing relation
is not strong enough - even this simple lemma fails: *}
lemma weakening_too_weak:
assumes a: "\<Gamma>1 \<turnstile> t:\<sigma>"
and b: "valid \<Gamma>2"
and c: "\<Gamma>1 \<lless> \<Gamma>2"
shows "\<Gamma>2 \<turnstile> t:\<sigma>"
using a b c
proof (induct arbitrary: \<Gamma>2)
case (t_Var \<Gamma>1 a \<tau>) (* variable case *)
have "\<Gamma>1 \<lless> \<Gamma>2" by fact
moreover
have "valid \<Gamma>2" by fact
moreover
have "(a,\<tau>) \<in> (set \<Gamma>1)" by fact
ultimately show "\<Gamma>2 \<turnstile> Var a : \<tau>" by auto
next
case (t_Lam a \<Gamma>1 \<tau> t \<sigma>) (* lambda case *)
(* all assumptions available in this case*)
have a0: "a\<sharp>\<Gamma>1" by fact
have a1: "((a,\<tau>)#\<Gamma>1) \<turnstile> t : \<sigma>" by fact
have a2: "\<Gamma>1 \<lless> \<Gamma>2" by fact
have a3: "valid \<Gamma>2" by fact
have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; ((a,\<tau>)#\<Gamma>1) \<lless> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t:\<sigma>" by fact
have "((a,\<tau>)#\<Gamma>1) \<lless> ((a,\<tau>)#\<Gamma>2)" using a2 by simp
moreover
have "valid ((a,\<tau>)#\<Gamma>2)" using v2 (* fails *)
oops
end