src/Pure/Isar/class.ML
author wenzelm
Wed, 03 Sep 2008 17:47:30 +0200
changeset 28110 9d121b171a0a
parent 28085 914183e229e9
child 28259 5b2af04ec9fb
permissions -rw-r--r--
Sign.declare_const: Name.binding;

(*  Title:      Pure/Isar/class.ML
    ID:         $Id$
    Author:     Florian Haftmann, TU Muenchen

Type classes derived from primitive axclasses and locales.
*)

signature CLASS =
sig
  (*classes*)
  val class: bstring -> class list -> Element.context_i list
    -> theory -> string * Proof.context
  val class_cmd: bstring -> xstring list -> Element.context list
    -> theory -> string * Proof.context

  val init: class -> theory -> Proof.context
  val declare: class -> Properties.T
    -> (string * mixfix) * term -> theory -> theory
  val abbrev: class -> Syntax.mode -> Properties.T
    -> (string * mixfix) * term -> theory -> theory
  val note: class -> string
    -> (Attrib.binding * (thm list * Attrib.src list) list) list
    -> theory -> (bstring * thm list) list * theory
  val declaration: class -> declaration -> theory -> theory
  val refresh_syntax: class -> Proof.context -> Proof.context

  val intro_classes_tac: thm list -> tactic
  val default_intro_tac: Proof.context -> thm list -> tactic
  val prove_subclass: class * class -> thm option -> theory -> theory

  val class_prefix: string -> string
  val is_class: theory -> class -> bool
  val these_params: theory -> sort -> (string * (class * (string * typ))) list
  val print_classes: theory -> unit

  (*instances*)
  val init_instantiation: string list * (string * sort) list * sort
    -> theory -> local_theory
  val instantiation_instance: (local_theory -> local_theory)
    -> local_theory -> Proof.state
  val prove_instantiation_instance: (Proof.context -> tactic)
    -> local_theory -> local_theory
  val conclude_instantiation: local_theory -> local_theory
  val instantiation_param: local_theory -> string -> string option
  val confirm_declaration: string -> local_theory -> local_theory
  val pretty_instantiation: local_theory -> Pretty.T
  val type_name: string -> string

  (*old axclass layer*)
  val axclass_cmd: bstring * xstring list
    -> (Attrib.binding * string list) list
    -> theory -> class * theory
  val classrel_cmd: xstring * xstring -> theory -> Proof.state

  (*old instance layer*)
  val instance_arity: (theory -> theory) -> arity -> theory -> Proof.state
  val instance_arity_cmd: bstring * xstring list * xstring -> theory -> Proof.state
end;

structure Class : CLASS =
struct

(** auxiliary **)

fun prove_interpretation tac prfx_atts expr inst =
  Locale.interpretation_i I prfx_atts expr inst
  #> Proof.global_terminal_proof
      (Method.Basic (fn ctxt => Method.SIMPLE_METHOD (tac ctxt), Position.none), NONE)
  #> ProofContext.theory_of;

fun prove_interpretation_in tac after_qed (name, expr) =
  Locale.interpretation_in_locale
      (ProofContext.theory after_qed) (name, expr)
  #> Proof.global_terminal_proof
      (Method.Basic (K (Method.SIMPLE_METHOD tac), Position.none), NONE)
  #> ProofContext.theory_of;


(** primitive axclass and instance commands **)

fun axclass_cmd (class, raw_superclasses) raw_specs thy =
  let
    val ctxt = ProofContext.init thy;
    val superclasses = map (Sign.read_class thy) raw_superclasses;
    val name_atts = map ((apsnd o map) (Attrib.attribute thy) o fst)
      raw_specs;
    val axiomss = ProofContext.read_propp (ctxt, map (map (rpair []) o snd)
          raw_specs)
      |> snd
      |> (map o map) fst;
  in
    AxClass.define_class (class, superclasses) []
      (name_atts ~~ axiomss) thy
  end;

local

fun gen_instance mk_prop add_thm after_qed insts thy =
  let
    fun after_qed' results =
      ProofContext.theory ((fold o fold) add_thm results #> after_qed);
  in
    thy
    |> ProofContext.init
    |> Proof.theorem_i NONE after_qed' ((map (fn t => [(t, [])])
        o mk_prop thy) insts)
  end;

in

val instance_arity =
  gen_instance (Logic.mk_arities oo Sign.cert_arity) AxClass.add_arity;
val instance_arity_cmd =
  gen_instance (Logic.mk_arities oo Sign.read_arity) AxClass.add_arity I;
val classrel =
  gen_instance (single oo (Logic.mk_classrel oo AxClass.cert_classrel)) AxClass.add_classrel I;
val classrel_cmd =
  gen_instance (single oo (Logic.mk_classrel oo AxClass.read_classrel)) AxClass.add_classrel I;

end; (*local*)


(** class data **)

datatype class_data = ClassData of {
  consts: (string * string) list
    (*locale parameter ~> constant name*),
  base_sort: sort,
  inst: term option list
    (*canonical interpretation*),
  morphism: theory -> thm list -> morphism,
    (*partial morphism of canonical interpretation*)
  assm_intro: thm option,
  of_class: thm,
  axiom: thm option,
  defs: thm list,
  operations: (string * (class * (typ * term))) list
};

fun rep_class_data (ClassData d) = d;
fun mk_class_data ((consts, base_sort, inst, morphism, assm_intro, of_class, axiom),
    (defs, operations)) =
  ClassData { consts = consts, base_sort = base_sort, inst = inst,
    morphism = morphism, assm_intro = assm_intro, of_class = of_class, axiom = axiom,
    defs = defs, operations = operations };
fun map_class_data f (ClassData { consts, base_sort, inst, morphism,
    assm_intro, of_class, axiom, defs, operations }) =
  mk_class_data (f ((consts, base_sort, inst, morphism, assm_intro, of_class, axiom),
    (defs, operations)));
fun merge_class_data _ (ClassData { consts = consts,
    base_sort = base_sort, inst = inst, morphism = morphism, assm_intro = assm_intro,
    of_class = of_class, axiom = axiom, defs = defs1, operations = operations1 },
  ClassData { consts = _, base_sort = _, inst = _, morphism = _, assm_intro = _,
    of_class = _, axiom = _, defs = defs2, operations = operations2 }) =
  mk_class_data ((consts, base_sort, inst, morphism, assm_intro, of_class, axiom),
    (Thm.merge_thms (defs1, defs2),
      AList.merge (op =) (K true) (operations1, operations2)));

structure ClassData = TheoryDataFun
(
  type T = class_data Graph.T
  val empty = Graph.empty;
  val copy = I;
  val extend = I;
  fun merge _ = Graph.join merge_class_data;
);


(* queries *)

val lookup_class_data = Option.map rep_class_data oo try o Graph.get_node o ClassData.get;

fun the_class_data thy class = case lookup_class_data thy class
 of NONE => error ("Undeclared class " ^ quote class)
  | SOME data => data;

val is_class = is_some oo lookup_class_data;

val ancestry = Graph.all_succs o ClassData.get;

fun these_params thy =
  let
    fun params class =
      let
        val const_typs = (#params o AxClass.get_info thy) class;
        val const_names = (#consts o the_class_data thy) class;
      in
        (map o apsnd)
          (fn c => (class, (c, (the o AList.lookup (op =) const_typs) c))) const_names
      end;
  in maps params o ancestry thy end;

fun these_defs thy = maps (these o Option.map #defs o lookup_class_data thy) o ancestry thy;

fun morphism thy class = #morphism (the_class_data thy class) thy (these_defs thy [class]);

fun these_assm_intros thy =
  Graph.fold (fn (_, (data, _)) => fold (insert Thm.eq_thm)
    ((the_list o #assm_intro o rep_class_data) data)) (ClassData.get thy) [];

fun these_operations thy =
  maps (#operations o the_class_data thy) o ancestry thy;

fun print_classes thy =
  let
    val ctxt = ProofContext.init thy;
    val algebra = Sign.classes_of thy;
    val arities =
      Symtab.empty
      |> Symtab.fold (fn (tyco, arities) => fold (fn (class, _) =>
           Symtab.map_default (class, []) (insert (op =) tyco)) arities)
             ((#arities o Sorts.rep_algebra) algebra);
    val the_arities = these o Symtab.lookup arities;
    fun mk_arity class tyco =
      let
        val Ss = Sorts.mg_domain algebra tyco [class];
      in Syntax.pretty_arity ctxt (tyco, Ss, [class]) end;
    fun mk_param (c, ty) = Pretty.str (Sign.extern_const thy c ^ " :: "
      ^ setmp show_sorts false (Syntax.string_of_typ ctxt o Type.strip_sorts) ty);
    fun mk_entry class = (Pretty.block o Pretty.fbreaks o map_filter I) [
      (SOME o Pretty.str) ("class " ^ Sign.extern_class thy class ^ ":"),
      (SOME o Pretty.block) [Pretty.str "supersort: ",
        (Syntax.pretty_sort ctxt o Sign.minimize_sort thy o Sign.super_classes thy) class],
      if is_class thy class then (SOME o Pretty.str)
        ("locale: " ^ Locale.extern thy class) else NONE,
      ((fn [] => NONE | ps => (SOME o Pretty.block o Pretty.fbreaks)
          (Pretty.str "parameters:" :: ps)) o map mk_param
        o these o Option.map #params o try (AxClass.get_info thy)) class,
      (SOME o Pretty.block o Pretty.breaks) [
        Pretty.str "instances:",
        Pretty.list "" "" (map (mk_arity class) (the_arities class))
      ]
    ]
  in
    (Pretty.writeln o Pretty.chunks o separate (Pretty.str "")
      o map mk_entry o Sorts.all_classes) algebra
  end;


(* updaters *)

fun add_class_data ((class, superclasses),
    (params, base_sort, inst, phi, axiom, assm_intro, of_class)) thy =
  let
    val operations = map (fn (v_ty as (_, ty), (c, _)) =>
      (c, (class, (ty, Free v_ty)))) params;
    val add_class = Graph.new_node (class,
        mk_class_data (((map o pairself) fst params, base_sort,
          map (SOME o Const) inst, phi, assm_intro, of_class, axiom), ([], operations)))
      #> fold (curry Graph.add_edge class) superclasses;
  in ClassData.map add_class thy end;

fun register_operation class (c, (t, some_def)) thy =
  let
    val base_sort = (#base_sort o the_class_data thy) class;
    val prep_typ = map_type_tvar
      (fn (vi as (v, _), sort) => if Name.aT = v
        then TFree (v, base_sort) else TVar (vi, sort));
    val t' = map_types prep_typ t;
    val ty' = Term.fastype_of t';
  in
    thy
    |> (ClassData.map o Graph.map_node class o map_class_data o apsnd)
      (fn (defs, operations) =>
        (fold cons (the_list some_def) defs,
          (c, (class, (ty', t'))) :: operations))
  end;


(** rule calculation, tactics and methods **)

val class_prefix = Logic.const_of_class o Sign.base_name;

fun calculate sups base_sort assm_axiom param_map class thy =
  let
    (*static parts of morphism*)
    val subst_typ = map_type_tfree (fn (v, sort) =>
          if v = Name.aT then TVar ((v, 0), [class]) else TVar ((v, 0), sort));
    fun subst_aterm (t as Free (v, ty)) = (case AList.lookup (op =) param_map v
         of SOME (c, _) => Const (c, ty)
          | NONE => t)
      | subst_aterm t = t;
    fun instantiate thy sort = Thm.instantiate ([pairself (Thm.ctyp_of thy o TVar o pair (Name.aT, 0))
      (base_sort, sort)], map (fn (v, (c, ty)) => pairself (Thm.cterm_of thy)
        (Var ((v, 0), map_atyps (fn _ => TVar ((Name.aT, 0), sort)) ty),
          Const (c, map_atyps (fn _ => TVar ((Name.aT, 0), sort)) ty))) param_map);
    (*fun inst thy sort thm = (tracing (makestring thm); instantiate thy sort thm);
    val instantiate = inst;*)
    val (proto_assm_intro, locale_intro) = Locale.intros thy class
      |> pairself (try the_single);
    val axiom_premises = map_filter (#axiom o the_class_data thy) sups
      @ the_list assm_axiom;
    val axiom = locale_intro
      |> Option.map (Thm.close_derivation o Drule.standard' o (fn thm => thm OF axiom_premises) o instantiate thy [class])
      |> (fn x as SOME _ => x | NONE => assm_axiom);
    val lift_axiom = case axiom
     of SOME axiom => (fn thm => ((*tracing "-(morphism)-";
          tracing (makestring thm);
          tracing (makestring axiom);*)
          Thm.implies_elim thm axiom))
      | NONE => I;

    (*dynamic parts of morphism*)
    fun avoid_a thy thm =
      let
        val tvars = Term.add_tvars (Thm.prop_of thm) [];
        val thm' = case AList.lookup (op =) tvars (Name.aT, 0)
         of SOME sort => Thm.instantiate ([pairself (Thm.ctyp_of thy o TVar o rpair sort o rpair 0)
              (Name.aT, Name.variant (map (fst o fst) tvars) Name.aT)], []) thm
          | NONE => thm;
      in thm' end;
    fun rew_term thy defs = Pattern.rewrite_term thy
      (map (Logic.dest_equals o Thm.prop_of) defs) [];
    fun subst_term thy defs = map_aterms subst_aterm #> rew_term thy defs
      #> map_types subst_typ;
    fun subst_thm thy defs = Drule.zero_var_indexes #> avoid_a thy
      #> Drule.standard' #> instantiate thy [class] #> lift_axiom
      #> MetaSimplifier.rewrite_rule defs;
    fun morphism thy defs =
      Morphism.typ_morphism subst_typ
      $> Morphism.term_morphism (subst_term thy defs)
      $> Morphism.thm_morphism (subst_thm thy defs);

    (*class rules*)
    val defs = these_defs thy sups;
    val assm_intro = proto_assm_intro
      |> Option.map (instantiate thy base_sort)
      |> Option.map (MetaSimplifier.rewrite_rule defs)
      |> Option.map Thm.close_derivation;
    val class_intro = (#intro o AxClass.get_info thy) class;
    val fixate = Thm.instantiate
      (map (pairself (Thm.ctyp_of thy)) [(TVar ((Name.aT, 0), []), TFree (Name.aT, base_sort)),
        (TVar ((Name.aT, 0), base_sort), TFree (Name.aT, base_sort))], [])
    val of_class_sups = if null sups
      then map (fixate o Thm.class_triv thy) base_sort
      else map (fixate o #of_class o the_class_data thy) sups;
    val locale_dests = map Drule.standard' (Locale.dests thy class);
    val num_trivs = case length locale_dests
     of 0 => if is_none axiom then 0 else 1
      | n => n;
    val pred_trivs = if num_trivs = 0 then []
      else the axiom
        |> Thm.prop_of
        |> (map_types o map_atyps o K) (TFree (Name.aT, base_sort))
        |> (Thm.assume o Thm.cterm_of thy)
        |> replicate num_trivs;
    val of_class = (fixate class_intro OF of_class_sups OF locale_dests OF pred_trivs)
      |> Drule.standard'
      |> Thm.close_derivation;
    val this_intro = assm_intro |> the_default class_intro;
  in
    thy
    |> Sign.sticky_prefix (class_prefix class ^ "_" ^ AxClass.axiomsN)
    |> PureThy.store_thm (AxClass.introN, this_intro)
    |> snd
    |> Sign.restore_naming thy
    |> pair (morphism, axiom, assm_intro, of_class)
  end;

fun class_interpretation class facts defs thy = thy;

fun class_interpretation class facts defs thy =
  let
    val consts = map (apsnd fst o snd) (these_params thy [class]);
    val constraints = map (fn (class, c) => map_atyps (K (TFree (Name.aT,
      [class]))) (Sign.the_const_type thy c)) consts;
    val no_constraints = map (map_atyps (K (TFree (Name.aT, [])))) constraints;
    fun add_constraint c T = Sign.add_const_constraint (c, SOME T);
    val inst = (#inst o the_class_data thy) class;
    fun tac ctxt = ALLGOALS (ProofContext.fact_tac facts
      ORELSE' (fn n => SELECT_GOAL (Locale.intro_locales_tac false ctxt []) n));
    val prfx = class_prefix class;
  in
    thy
    |> fold2 add_constraint (map snd consts) no_constraints
    |> prove_interpretation tac (false, prfx) (Locale.Locale class)
          (inst, map (fn def => (Attrib.no_binding, def)) defs)
    |> fold2 add_constraint (map snd consts) constraints
  end;

fun prove_subclass (sub, sup) some_thm thy =
  let
    val of_class = (#of_class o the_class_data thy) sup;
    val intro = case some_thm
     of SOME thm => Drule.standard' (of_class OF [Drule.standard' thm])
      | NONE => Thm.instantiate ([pairself (Thm.ctyp_of thy o TVar o pair (Name.aT, 0))
          ([], [sub])], []) of_class;
    val classrel = (intro OF (the_list o #axiom o the_class_data thy) sub)
      |> Thm.close_derivation;
  in
    thy
    |> AxClass.add_classrel classrel
    |> prove_interpretation_in (ALLGOALS (ProofContext.fact_tac (the_list some_thm)))
         I (sub, Locale.Locale sup)
    |> ClassData.map (Graph.add_edge (sub, sup))
  end;

fun intro_classes_tac facts st =
  let
    val thy = Thm.theory_of_thm st;
    val classes = Sign.all_classes thy;
    val class_trivs = map (Thm.class_triv thy) classes;
    val class_intros = map_filter (try (#intro o AxClass.get_info thy)) classes;
    val assm_intros = these_assm_intros thy;
  in
    Method.intros_tac (class_trivs @ class_intros @ assm_intros) facts st
  end;

fun default_intro_tac ctxt [] =
      intro_classes_tac [] ORELSE Locale.intro_locales_tac true ctxt []
  | default_intro_tac _ _ = no_tac;

fun default_tac rules ctxt facts =
  HEADGOAL (Method.some_rule_tac rules ctxt facts) ORELSE
    default_intro_tac ctxt facts;

val _ = Context.>> (Context.map_theory
  (Method.add_methods
   [("intro_classes", Method.no_args (Method.METHOD intro_classes_tac),
      "back-chain introduction rules of classes"),
    ("default", Method.thms_ctxt_args (Method.METHOD oo default_tac),
      "apply some intro/elim rule")]));


(** classes and class target **)

(* class context syntax *)

fun synchronize_class_syntax sups base_sort ctxt =
  let
    val thy = ProofContext.theory_of ctxt;
    val algebra = Sign.classes_of thy;
    val operations = these_operations thy sups;
    fun subst_class_typ sort = map_type_tfree (K (TVar ((Name.aT, 0), sort)));
    val primary_constraints =
      (map o apsnd) (subst_class_typ base_sort o fst o snd) operations;
    val secondary_constraints =
      (map o apsnd) (fn (class, (ty, _)) => subst_class_typ [class] ty) operations;
    fun declare_const (c, _) =
      let val b = Sign.base_name c
      in Sign.intern_const thy b = c ? Variable.declare_const (b, c) end;
    fun improve (c, ty) = (case AList.lookup (op =) primary_constraints c
     of SOME ty' => (case try (Type.raw_match (ty', ty)) Vartab.empty
         of SOME tyenv => (case Vartab.lookup tyenv (Name.aT, 0)
             of SOME (_, ty' as TVar (tvar as (vi, sort))) =>
                  if TypeInfer.is_param vi
                    andalso Sorts.sort_le algebra (base_sort, sort)
                      then SOME (ty', TFree (Name.aT, base_sort))
                      else NONE
              | _ => NONE)
          | NONE => NONE)
      | NONE => NONE)
    fun subst (c, ty) = Option.map snd (AList.lookup (op =) operations c);
    val unchecks = map (fn (c, (_, (ty, t))) => (t, Const (c, ty))) operations;
  in
    ctxt
    |> fold declare_const primary_constraints
    |> Overloading.map_improvable_syntax (K (((primary_constraints, secondary_constraints),
        (((improve, subst), true), unchecks)), false))
    |> Overloading.set_primary_constraints
  end;

fun refresh_syntax class ctxt =
  let
    val thy = ProofContext.theory_of ctxt;
    val base_sort = (#base_sort o the_class_data thy) class;
  in synchronize_class_syntax [class] base_sort ctxt end;

fun init_ctxt sups base_sort ctxt =
  ctxt
  |> Variable.declare_term
      (Logic.mk_type (TFree (Name.aT, base_sort)))
  |> synchronize_class_syntax sups base_sort
  |> Overloading.add_improvable_syntax;

fun init class thy =
  thy
  |> Locale.init class
  |> init_ctxt [class] ((#base_sort o the_class_data thy) class);


(* class target *)

fun declare class pos ((c, mx), dict) thy =
  let
    val prfx = class_prefix class;
    val thy' = thy |> Sign.add_path prfx;
    val phi = morphism thy' class;

    val c' = Sign.full_name thy' c;
    val dict' = Morphism.term phi dict;
    val dict_def = map_types Logic.unvarifyT dict';
    val ty' = Term.fastype_of dict_def;
    val ty'' = Type.strip_sorts ty';
    val def_eq = Logic.mk_equals (Const (c', ty'), dict_def);
    fun get_axiom thy = ((Thm.varifyT o Thm.get_axiom_i thy) c', thy);
  in
    thy'
    |> Sign.declare_const pos ((Name.binding c, ty''), mx) |> snd
    |> Thm.add_def false false (c, def_eq)
    |>> Thm.symmetric
    ||>> get_axiom
    |-> (fn (def, def') => class_interpretation class [def] [Thm.prop_of def]
      #> register_operation class (c', (dict', SOME (Thm.symmetric def')))
      #> PureThy.store_thm (c ^ "_raw", def')
      #> snd)
    |> Sign.restore_naming thy
    |> Sign.add_const_constraint (c', SOME ty')
  end;

fun abbrev class prmode pos ((c, mx), rhs) thy =
  let
    val prfx = class_prefix class;
    val thy' = thy |> Sign.add_path prfx;

    val unchecks = map (fn (c, (_, (ty, t))) => (t, Const (c, ty)))
      (these_operations thy [class]);
    val c' = Sign.full_name thy' c;
    val rhs' = Pattern.rewrite_term thy unchecks [] rhs;
    val rhs'' = map_types Logic.varifyT rhs';
    val ty' = Term.fastype_of rhs';
  in
    thy'
    |> Sign.add_abbrev (#1 prmode) pos (c, map_types Type.strip_sorts rhs'') |> snd
    |> Sign.add_const_constraint (c', SOME ty')
    |> Sign.notation true prmode [(Const (c', ty'), mx)]
    |> not (#1 prmode = PrintMode.input) ? register_operation class (c', (rhs', NONE))
    |> Sign.restore_naming thy
  end;

fun note class kind facts thy =
  let
    val phi = morphism thy class;
    val facts' = facts
      |> PureThy.map_facts (Morphism.thm phi) 
      |> Attrib.map_facts (Attrib.attribute_i thy);
  in
    thy
    |> Sign.add_path (class_prefix class)
    |> PureThy.note_thmss kind facts'
    ||> Sign.restore_naming thy
  end;

fun declaration class decl thy =
  Context.theory_map (decl (morphism thy class)) thy;


(* class definition *)

local

fun gen_class_spec prep_class process_expr thy raw_supclasses raw_elems =
  let
    val supclasses = map (prep_class thy) raw_supclasses;
    val supsort = Sign.minimize_sort thy supclasses;
    val sups = filter (is_class thy) supsort;
    val supparam_names = map fst (these_params thy sups);
    val _ = if has_duplicates (op =) supparam_names
      then error ("Duplicate parameter(s) in superclasses: "
        ^ (commas o map quote o duplicates (op =)) supparam_names)
      else ();
    val base_sort = if null sups then supsort else
      foldr1 (Sorts.inter_sort (Sign.classes_of thy))
        (map (#base_sort o the_class_data thy) sups);
    val suplocales = map Locale.Locale sups;
    val supexpr = Locale.Merge suplocales;
    val supparams = (map fst o Locale.parameters_of_expr thy) supexpr;
    val mergeexpr = Locale.Merge (suplocales);
    val constrain = Element.Constrains ((map o apsnd o map_atyps)
      (K (TFree (Name.aT, base_sort))) supparams);
    fun fork_syn (Element.Fixes xs) =
          fold_map (fn (c, ty, syn) => cons (Name.name_of c, syn) #> pair (c, ty, NoSyn)) xs
          #>> Element.Fixes
      | fork_syn x = pair x;
    fun fork_syntax elems =
      let
        val (elems', global_syntax) = fold_map fork_syn elems [];
      in (constrain :: elems', global_syntax) end;
    val (elems, global_syntax) =
      ProofContext.init thy
      |> Locale.cert_expr supexpr [constrain]
      |> snd
      |> init_ctxt sups base_sort
      |> process_expr Locale.empty raw_elems
      |> fst
      |> fork_syntax
  in (((sups, supparams), (supsort, base_sort, mergeexpr)), (elems, global_syntax)) end;

val read_class_spec = gen_class_spec Sign.intern_class Locale.read_expr;
val check_class_spec = gen_class_spec (K I) Locale.cert_expr;

fun adjungate_axclass bname class base_sort sups supsort supparams global_syntax thy =
  let
    val supconsts = map fst supparams
      |> AList.make (snd o the o AList.lookup (op =) (these_params thy sups))
      |> (map o apsnd o apsnd o map_atyps o K o TFree) (Name.aT, [class]);
    val all_params = map fst (Locale.parameters_of thy class);
    fun add_const (v, raw_ty) thy =
      let
        val c = Sign.full_name thy v;
        val ty = map_atyps (K (TFree (Name.aT, base_sort))) raw_ty;
        val ty0 = Type.strip_sorts ty;
        val ty' = map_atyps (K (TFree (Name.aT, [class]))) ty0;
        val syn = (the_default NoSyn o AList.lookup (op =) global_syntax) v;
      in
        thy
        |> Sign.declare_const [] ((Name.binding v, ty0), syn)
        |> snd
        |> pair ((v, ty), (c, ty'))
      end;
    fun add_consts raw_params thy =
      thy
      |> Sign.add_path (Logic.const_of_class bname)
      |> fold_map add_const raw_params
      ||> Sign.restore_naming thy
      |-> (fn params => pair (supconsts @ (map o apfst) fst params, params));
    fun globalize param_map = map_aterms
      (fn Free (v, ty) => Const ((fst o the o AList.lookup (op =) param_map) v, ty)
        | t => t);
    val raw_pred = Locale.intros thy class
      |> fst
      |> map (Logic.unvarify o Logic.strip_imp_concl o Thm.prop_of);
    fun get_axiom thy = case (#axioms o AxClass.get_info thy) class
     of [] => NONE
      | [thm] => SOME thm;
  in
    thy
    |> add_consts ((snd o chop (length supparams)) all_params)
    |-> (fn (param_map, params) => AxClass.define_class (bname, supsort)
          (map (fst o snd) params)
          [((Name.binding (bname ^ "_" ^ AxClass.axiomsN), []), map (globalize param_map) raw_pred)]
    #> snd
    #> `get_axiom
    #-> (fn assm_axiom => fold (Sign.add_const_constraint o apsnd SOME o snd) params
    #> pair (param_map, params, assm_axiom)))
  end;

fun gen_class prep_spec bname raw_supclasses raw_elems thy =
  let
    val class = Sign.full_name thy bname;
    val (((sups, supparams), (supsort, base_sort, mergeexpr)), (elems, global_syntax)) =
      prep_spec thy raw_supclasses raw_elems;
  in
    thy
    |> Locale.add_locale_i "" bname mergeexpr elems
    |> snd
    |> ProofContext.theory_of
    |> adjungate_axclass bname class base_sort sups supsort supparams global_syntax
    |-> (fn (param_map, params, assm_axiom) =>
        calculate sups base_sort assm_axiom param_map class
    #-> (fn (morphism, axiom, assm_intro, of_class) =>
        add_class_data ((class, sups), (params, base_sort,
          map snd param_map, morphism, axiom, assm_intro, of_class))
    (*#> `(fn thy => Locale.facts_of thy class)
    #-> (fn facts => fold_map (note class Thm.assumptionK) facts
    #> snd*)
    #> class_interpretation class (the_list axiom) []))
    |> init class
    |> pair class
  end;

in

val class_cmd = gen_class read_class_spec;
val class = gen_class check_class_spec;

end; (*local*)



(** instantiation target **)

(* bookkeeping *)

datatype instantiation = Instantiation of {
  arities: string list * (string * sort) list * sort,
  params: ((string * string) * (string * typ)) list
    (*(instantiation parameter, type constructor), (local instantiation parameter, typ)*)
}

structure Instantiation = ProofDataFun
(
  type T = instantiation
  fun init _ = Instantiation { arities = ([], [], []), params = [] };
);

fun mk_instantiation (arities, params) =
  Instantiation { arities = arities, params = params };
fun get_instantiation lthy = case Instantiation.get (LocalTheory.target_of lthy)
 of Instantiation data => data;
fun map_instantiation f = (LocalTheory.target o Instantiation.map)
  (fn Instantiation { arities, params } => mk_instantiation (f (arities, params)));

fun the_instantiation lthy = case get_instantiation lthy
 of { arities = ([], [], []), ... } => error "No instantiation target"
  | data => data;

val instantiation_params = #params o get_instantiation;

fun instantiation_param lthy v = instantiation_params lthy
  |> find_first (fn (_, (v', _)) => v = v')
  |> Option.map (fst o fst);


(* syntax *)

fun synchronize_inst_syntax ctxt =
  let
    val Instantiation { arities = (_, _, sort), params = params } = Instantiation.get ctxt;
    val thy = ProofContext.theory_of ctxt;
    fun subst (c, ty) = case AxClass.inst_tyco_of thy (c, ty)
         of SOME tyco => (case AList.lookup (op =) params (c, tyco)
             of SOME (v_ty as (_, ty)) => SOME (ty, Free v_ty)
              | NONE => NONE)
          | NONE => NONE;
    val unchecks =
      map (fn ((c, _), v_ty as (_, ty)) => (Free v_ty, Const (c, ty))) params;
  in
    ctxt
    |> Overloading.map_improvable_syntax
         (fn (((primary_constraints, _), (((improve, _), _), _)), _) =>
            (((primary_constraints, []), (((improve, subst), false), unchecks)), false))
  end;


(* target *)

val sanatize_name = (*FIXME*)
  let
    fun is_valid s = Symbol.is_ascii_letter s orelse Symbol.is_ascii_digit s
      orelse s = "'" orelse s = "_";
    val is_junk = not o is_valid andf Symbol.is_regular;
    val junk = Scan.many is_junk;
    val scan_valids = Symbol.scanner "Malformed input"
      ((junk |--
        (Scan.optional (Scan.one Symbol.is_ascii_letter) "x" ^^ (Scan.many is_valid >> implode)
        --| junk))
      ::: Scan.repeat ((Scan.many1 is_valid >> implode) --| junk));
  in
    explode #> scan_valids #> implode
  end;

fun type_name "*" = "prod"
  | type_name "+" = "sum"
  | type_name s = sanatize_name (NameSpace.base s); (*FIXME*)

fun resort_terms pp algebra consts constraints ts =
  let
    fun matchings (Const (c_ty as (c, _))) = (case constraints c
         of NONE => I
          | SOME sorts => fold2 (curry (Sorts.meet_sort algebra))
              (Consts.typargs consts c_ty) sorts)
      | matchings _ = I
    val tvartab = (fold o fold_aterms) matchings ts Vartab.empty
      handle Sorts.CLASS_ERROR e => error (Sorts.class_error pp e);
    val inst = map_type_tvar
      (fn (vi, sort) => TVar (vi, the_default sort (Vartab.lookup tvartab vi)));
  in if Vartab.is_empty tvartab then NONE else SOME ((map o map_types) inst ts) end;

fun init_instantiation (tycos, vs, sort) thy =
  let
    val _ = if null tycos then error "At least one arity must be given" else ();
    val params = these_params thy sort;
    fun get_param tyco (param, (_, (c, ty))) = if can (AxClass.param_of_inst thy) (c, tyco)
      then NONE else SOME ((c, tyco),
        (param ^ "_" ^ type_name tyco, map_atyps (K (Type (tyco, map TFree vs))) ty));
    val inst_params = map_product get_param tycos params |> map_filter I;
    val primary_constraints = map (apsnd
      (map_atyps (K (TVar ((Name.aT, 0), [])))) o snd o snd) params;
    val pp = Syntax.pp_global thy;
    val algebra = Sign.classes_of thy
      |> fold (fn tyco => Sorts.add_arities pp
            (tyco, map (fn class => (class, map snd vs)) sort)) tycos;
    val consts = Sign.consts_of thy;
    val improve_constraints = AList.lookup (op =)
      (map (fn (_, (class, (c, _))) => (c, [[class]])) params);
    fun resort_check ts ctxt = case resort_terms pp algebra consts improve_constraints ts
     of NONE => NONE
      | SOME ts' => SOME (ts', ctxt);
    fun improve (c, ty) = case AxClass.inst_tyco_of thy (c, ty)
     of SOME tyco => (case AList.lookup (op =) inst_params (c, tyco)
         of SOME (_, ty') => if Type.raw_instance (ty', ty) then SOME (ty, ty') else NONE
          | NONE => NONE)
      | NONE => NONE;
  in
    thy
    |> ProofContext.init
    |> Instantiation.put (mk_instantiation ((tycos, vs, sort), inst_params))
    |> fold (Variable.declare_typ o TFree) vs
    |> fold (Variable.declare_names o Free o snd) inst_params
    |> (Overloading.map_improvable_syntax o apfst)
         (fn ((_, _), ((_, subst), unchecks)) =>
            ((primary_constraints, []), (((improve, K NONE), false), [])))
    |> Overloading.add_improvable_syntax
    |> Context.proof_map (Syntax.add_term_check 0 "resorting" resort_check)
    |> synchronize_inst_syntax
  end;

fun confirm_declaration c = (map_instantiation o apsnd)
  (filter_out (fn (_, (c', _)) => c' = c))
  #> LocalTheory.target synchronize_inst_syntax

fun gen_instantiation_instance do_proof after_qed lthy =
  let
    val (tycos, vs, sort) = (#arities o the_instantiation) lthy;
    val arities_proof = maps (fn tyco => Logic.mk_arities (tyco, map snd vs, sort)) tycos;
    fun after_qed' results =
      LocalTheory.theory (fold (AxClass.add_arity o Thm.varifyT) results)
      #> after_qed;
  in
    lthy
    |> do_proof after_qed' arities_proof
  end;

val instantiation_instance = gen_instantiation_instance (fn after_qed => fn ts =>
  Proof.theorem_i NONE (after_qed o map the_single) (map (fn t => [(t, [])]) ts));

fun prove_instantiation_instance tac = gen_instantiation_instance (fn after_qed =>
  fn ts => fn lthy => after_qed (map (fn t => Goal.prove lthy [] [] t
    (fn {context, ...} => tac context)) ts) lthy) I;

fun conclude_instantiation lthy =
  let
    val { arities, params } = the_instantiation lthy;
    val (tycos, vs, sort) = arities;
    val thy = ProofContext.theory_of lthy;
    val _ = map (fn tyco => if Sign.of_sort thy
        (Type (tyco, map TFree vs), sort)
      then () else error ("Missing instance proof for type " ^ quote (Sign.extern_type thy tyco)))
        tycos;
  in lthy end;

fun pretty_instantiation lthy =
  let
    val { arities, params } = the_instantiation lthy;
    val (tycos, vs, sort) = arities;
    val thy = ProofContext.theory_of lthy;
    fun pr_arity tyco = Syntax.pretty_arity lthy (tyco, map snd vs, sort);
    fun pr_param ((c, _), (v, ty)) =
      (Pretty.block o Pretty.breaks) [Pretty.str v, Pretty.str "==",
        (Pretty.str o Sign.extern_const thy) c, Pretty.str "::", Syntax.pretty_typ_global thy ty];
  in
    (Pretty.block o Pretty.fbreaks)
      (Pretty.str "instantiation" :: map pr_arity tycos @ map pr_param params)
  end;

end;