(* Title: HOL/HOL.thy
ID: $Id$
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson
*)
header {* The basis of Higher-Order Logic *}
theory HOL
imports CPure
files ("HOL_lemmas.ML") ("cladata.ML") ("blastdata.ML") ("simpdata.ML")
("antisym_setup.ML")
begin
subsection {* Primitive logic *}
subsubsection {* Core syntax *}
classes type
defaultsort type
global
typedecl bool
arities
bool :: type
fun :: (type, type) type
judgment
Trueprop :: "bool => prop" ("(_)" 5)
consts
Not :: "bool => bool" ("~ _" [40] 40)
True :: bool
False :: bool
If :: "[bool, 'a, 'a] => 'a" ("(if (_)/ then (_)/ else (_))" 10)
arbitrary :: 'a
The :: "('a => bool) => 'a"
All :: "('a => bool) => bool" (binder "ALL " 10)
Ex :: "('a => bool) => bool" (binder "EX " 10)
Ex1 :: "('a => bool) => bool" (binder "EX! " 10)
Let :: "['a, 'a => 'b] => 'b"
"=" :: "['a, 'a] => bool" (infixl 50)
& :: "[bool, bool] => bool" (infixr 35)
"|" :: "[bool, bool] => bool" (infixr 30)
--> :: "[bool, bool] => bool" (infixr 25)
local
subsubsection {* Additional concrete syntax *}
nonterminals
letbinds letbind
case_syn cases_syn
syntax
"_not_equal" :: "['a, 'a] => bool" (infixl "~=" 50)
"_The" :: "[pttrn, bool] => 'a" ("(3THE _./ _)" [0, 10] 10)
"_bind" :: "[pttrn, 'a] => letbind" ("(2_ =/ _)" 10)
"" :: "letbind => letbinds" ("_")
"_binds" :: "[letbind, letbinds] => letbinds" ("_;/ _")
"_Let" :: "[letbinds, 'a] => 'a" ("(let (_)/ in (_))" 10)
"_case_syntax":: "['a, cases_syn] => 'b" ("(case _ of/ _)" 10)
"_case1" :: "['a, 'b] => case_syn" ("(2_ =>/ _)" 10)
"" :: "case_syn => cases_syn" ("_")
"_case2" :: "[case_syn, cases_syn] => cases_syn" ("_/ | _")
translations
"x ~= y" == "~ (x = y)"
"THE x. P" == "The (%x. P)"
"_Let (_binds b bs) e" == "_Let b (_Let bs e)"
"let x = a in e" == "Let a (%x. e)"
print_translation {*
(* To avoid eta-contraction of body: *)
[("The", fn [Abs abs] =>
let val (x,t) = atomic_abs_tr' abs
in Syntax.const "_The" $ x $ t end)]
*}
syntax (output)
"=" :: "['a, 'a] => bool" (infix 50)
"_not_equal" :: "['a, 'a] => bool" (infix "~=" 50)
syntax (xsymbols)
Not :: "bool => bool" ("\<not> _" [40] 40)
"op &" :: "[bool, bool] => bool" (infixr "\<and>" 35)
"op |" :: "[bool, bool] => bool" (infixr "\<or>" 30)
"op -->" :: "[bool, bool] => bool" (infixr "\<longrightarrow>" 25)
"_not_equal" :: "['a, 'a] => bool" (infix "\<noteq>" 50)
"ALL " :: "[idts, bool] => bool" ("(3\<forall>_./ _)" [0, 10] 10)
"EX " :: "[idts, bool] => bool" ("(3\<exists>_./ _)" [0, 10] 10)
"EX! " :: "[idts, bool] => bool" ("(3\<exists>!_./ _)" [0, 10] 10)
"_case1" :: "['a, 'b] => case_syn" ("(2_ \<Rightarrow>/ _)" 10)
(*"_case2" :: "[case_syn, cases_syn] => cases_syn" ("_/ \<orelse> _")*)
syntax (xsymbols output)
"_not_equal" :: "['a, 'a] => bool" (infix "\<noteq>" 50)
syntax (HTML output)
"_not_equal" :: "['a, 'a] => bool" (infix "\<noteq>" 50)
Not :: "bool => bool" ("\<not> _" [40] 40)
"op &" :: "[bool, bool] => bool" (infixr "\<and>" 35)
"op |" :: "[bool, bool] => bool" (infixr "\<or>" 30)
"_not_equal" :: "['a, 'a] => bool" (infix "\<noteq>" 50)
"ALL " :: "[idts, bool] => bool" ("(3\<forall>_./ _)" [0, 10] 10)
"EX " :: "[idts, bool] => bool" ("(3\<exists>_./ _)" [0, 10] 10)
"EX! " :: "[idts, bool] => bool" ("(3\<exists>!_./ _)" [0, 10] 10)
syntax (HOL)
"ALL " :: "[idts, bool] => bool" ("(3! _./ _)" [0, 10] 10)
"EX " :: "[idts, bool] => bool" ("(3? _./ _)" [0, 10] 10)
"EX! " :: "[idts, bool] => bool" ("(3?! _./ _)" [0, 10] 10)
subsubsection {* Axioms and basic definitions *}
axioms
eq_reflection: "(x=y) ==> (x==y)"
refl: "t = (t::'a)"
subst: "[| s = t; P(s) |] ==> P(t::'a)"
ext: "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)"
-- {* Extensionality is built into the meta-logic, and this rule expresses *}
-- {* a related property. It is an eta-expanded version of the traditional *}
-- {* rule, and similar to the ABS rule of HOL *}
the_eq_trivial: "(THE x. x = a) = (a::'a)"
impI: "(P ==> Q) ==> P-->Q"
mp: "[| P-->Q; P |] ==> Q"
defs
True_def: "True == ((%x::bool. x) = (%x. x))"
All_def: "All(P) == (P = (%x. True))"
Ex_def: "Ex(P) == !Q. (!x. P x --> Q) --> Q"
False_def: "False == (!P. P)"
not_def: "~ P == P-->False"
and_def: "P & Q == !R. (P-->Q-->R) --> R"
or_def: "P | Q == !R. (P-->R) --> (Q-->R) --> R"
Ex1_def: "Ex1(P) == ? x. P(x) & (! y. P(y) --> y=x)"
axioms
iff: "(P-->Q) --> (Q-->P) --> (P=Q)"
True_or_False: "(P=True) | (P=False)"
defs
Let_def: "Let s f == f(s)"
if_def: "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)"
finalconsts
"op ="
"op -->"
The
arbitrary
subsubsection {* Generic algebraic operations *}
axclass zero < type
axclass one < type
axclass plus < type
axclass minus < type
axclass times < type
axclass inverse < type
global
consts
"0" :: "'a::zero" ("0")
"1" :: "'a::one" ("1")
"+" :: "['a::plus, 'a] => 'a" (infixl 65)
- :: "['a::minus, 'a] => 'a" (infixl 65)
uminus :: "['a::minus] => 'a" ("- _" [81] 80)
* :: "['a::times, 'a] => 'a" (infixl 70)
syntax
"_index1" :: index ("\<^sub>1")
translations
(index) "\<^sub>1" => (index) "\<^bsub>\<struct>\<^esub>"
local
typed_print_translation {*
let
fun tr' c = (c, fn show_sorts => fn T => fn ts =>
if T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match
else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T);
in [tr' "0", tr' "1"] end;
*} -- {* show types that are presumably too general *}
consts
abs :: "'a::minus => 'a"
inverse :: "'a::inverse => 'a"
divide :: "['a::inverse, 'a] => 'a" (infixl "'/" 70)
syntax (xsymbols)
abs :: "'a::minus => 'a" ("\<bar>_\<bar>")
syntax (HTML output)
abs :: "'a::minus => 'a" ("\<bar>_\<bar>")
subsection {* Theory and package setup *}
subsubsection {* Basic lemmas *}
use "HOL_lemmas.ML"
theorems case_split = case_split_thm [case_names True False]
subsubsection {* Intuitionistic Reasoning *}
lemma impE':
assumes 1: "P --> Q"
and 2: "Q ==> R"
and 3: "P --> Q ==> P"
shows R
proof -
from 3 and 1 have P .
with 1 have Q by (rule impE)
with 2 show R .
qed
lemma allE':
assumes 1: "ALL x. P x"
and 2: "P x ==> ALL x. P x ==> Q"
shows Q
proof -
from 1 have "P x" by (rule spec)
from this and 1 show Q by (rule 2)
qed
lemma notE':
assumes 1: "~ P"
and 2: "~ P ==> P"
shows R
proof -
from 2 and 1 have P .
with 1 show R by (rule notE)
qed
lemmas [CPure.elim!] = disjE iffE FalseE conjE exE
and [CPure.intro!] = iffI conjI impI TrueI notI allI refl
and [CPure.elim 2] = allE notE' impE'
and [CPure.intro] = exI disjI2 disjI1
lemmas [trans] = trans
and [sym] = sym not_sym
and [CPure.elim?] = iffD1 iffD2 impE
subsubsection {* Atomizing meta-level connectives *}
lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)"
proof
assume "!!x. P x"
show "ALL x. P x" by (rule allI)
next
assume "ALL x. P x"
thus "!!x. P x" by (rule allE)
qed
lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)"
proof
assume r: "A ==> B"
show "A --> B" by (rule impI) (rule r)
next
assume "A --> B" and A
thus B by (rule mp)
qed
lemma atomize_not: "(A ==> False) == Trueprop (~A)"
proof
assume r: "A ==> False"
show "~A" by (rule notI) (rule r)
next
assume "~A" and A
thus False by (rule notE)
qed
lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)"
proof
assume "x == y"
show "x = y" by (unfold prems) (rule refl)
next
assume "x = y"
thus "x == y" by (rule eq_reflection)
qed
lemma atomize_conj [atomize]:
"(!!C. (A ==> B ==> PROP C) ==> PROP C) == Trueprop (A & B)"
proof
assume "!!C. (A ==> B ==> PROP C) ==> PROP C"
show "A & B" by (rule conjI)
next
fix C
assume "A & B"
assume "A ==> B ==> PROP C"
thus "PROP C"
proof this
show A by (rule conjunct1)
show B by (rule conjunct2)
qed
qed
lemmas [symmetric, rulify] = atomize_all atomize_imp
subsubsection {* Classical Reasoner setup *}
use "cladata.ML"
setup hypsubst_setup
ML_setup {*
Context.>> (ContextRules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac));
*}
setup Classical.setup
setup clasetup
lemmas [intro?] = ext
and [elim?] = ex1_implies_ex
use "blastdata.ML"
setup Blast.setup
subsubsection {* Simplifier setup *}
lemma meta_eq_to_obj_eq: "x == y ==> x = y"
proof -
assume r: "x == y"
show "x = y" by (unfold r) (rule refl)
qed
lemma eta_contract_eq: "(%s. f s) = f" ..
lemma simp_thms:
shows not_not: "(~ ~ P) = P"
and
"(P ~= Q) = (P = (~Q))"
"(P | ~P) = True" "(~P | P) = True"
"((~P) = (~Q)) = (P=Q)"
"(x = x) = True"
"(~True) = False" "(~False) = True"
"(~P) ~= P" "P ~= (~P)"
"(True=P) = P" "(P=True) = P" "(False=P) = (~P)" "(P=False) = (~P)"
"(True --> P) = P" "(False --> P) = True"
"(P --> True) = True" "(P --> P) = True"
"(P --> False) = (~P)" "(P --> ~P) = (~P)"
"(P & True) = P" "(True & P) = P"
"(P & False) = False" "(False & P) = False"
"(P & P) = P" "(P & (P & Q)) = (P & Q)"
"(P & ~P) = False" "(~P & P) = False"
"(P | True) = True" "(True | P) = True"
"(P | False) = P" "(False | P) = P"
"(P | P) = P" "(P | (P | Q)) = (P | Q)" and
"(ALL x. P) = P" "(EX x. P) = P" "EX x. x=t" "EX x. t=x"
-- {* needed for the one-point-rule quantifier simplification procs *}
-- {* essential for termination!! *} and
"!!P. (EX x. x=t & P(x)) = P(t)"
"!!P. (EX x. t=x & P(x)) = P(t)"
"!!P. (ALL x. x=t --> P(x)) = P(t)"
"!!P. (ALL x. t=x --> P(x)) = P(t)"
by (blast, blast, blast, blast, blast, rules+)
lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))"
by rules
lemma ex_simps:
"!!P Q. (EX x. P x & Q) = ((EX x. P x) & Q)"
"!!P Q. (EX x. P & Q x) = (P & (EX x. Q x))"
"!!P Q. (EX x. P x | Q) = ((EX x. P x) | Q)"
"!!P Q. (EX x. P | Q x) = (P | (EX x. Q x))"
"!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)"
"!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))"
-- {* Miniscoping: pushing in existential quantifiers. *}
by (rules | blast)+
lemma all_simps:
"!!P Q. (ALL x. P x & Q) = ((ALL x. P x) & Q)"
"!!P Q. (ALL x. P & Q x) = (P & (ALL x. Q x))"
"!!P Q. (ALL x. P x | Q) = ((ALL x. P x) | Q)"
"!!P Q. (ALL x. P | Q x) = (P | (ALL x. Q x))"
"!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)"
"!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))"
-- {* Miniscoping: pushing in universal quantifiers. *}
by (rules | blast)+
lemma disj_absorb: "(A | A) = A"
by blast
lemma disj_left_absorb: "(A | (A | B)) = (A | B)"
by blast
lemma conj_absorb: "(A & A) = A"
by blast
lemma conj_left_absorb: "(A & (A & B)) = (A & B)"
by blast
lemma eq_ac:
shows eq_commute: "(a=b) = (b=a)"
and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))"
and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (rules, blast+)
lemma neq_commute: "(a~=b) = (b~=a)" by rules
lemma conj_comms:
shows conj_commute: "(P&Q) = (Q&P)"
and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by rules+
lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by rules
lemma disj_comms:
shows disj_commute: "(P|Q) = (Q|P)"
and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by rules+
lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by rules
lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by rules
lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by rules
lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by rules
lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by rules
lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by rules
lemma imp_conjL: "((P&Q) -->R) = (P --> (Q --> R))" by rules
lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by rules
text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast
lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast
lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast
lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast
lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by rules
lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast
lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast
lemma not_iff: "(P~=Q) = (P = (~Q))" by blast
lemma disj_not1: "(~P | Q) = (P --> Q)" by blast
lemma disj_not2: "(P | ~Q) = (Q --> P)" -- {* changes orientation :-( *}
by blast
lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast
lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by rules
lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q"
-- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
-- {* cases boil down to the same thing. *}
by blast
lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast
lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast
lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by rules
lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by rules
lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by rules
lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by rules
text {*
\medskip The @{text "&"} congruence rule: not included by default!
May slow rewrite proofs down by as much as 50\% *}
lemma conj_cong:
"(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))"
by rules
lemma rev_conj_cong:
"(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))"
by rules
text {* The @{text "|"} congruence rule: not included by default! *}
lemma disj_cong:
"(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))"
by blast
lemma eq_sym_conv: "(x = y) = (y = x)"
by rules
text {* \medskip if-then-else rules *}
lemma if_True: "(if True then x else y) = x"
by (unfold if_def) blast
lemma if_False: "(if False then x else y) = y"
by (unfold if_def) blast
lemma if_P: "P ==> (if P then x else y) = x"
by (unfold if_def) blast
lemma if_not_P: "~P ==> (if P then x else y) = y"
by (unfold if_def) blast
lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
apply (rule case_split [of Q])
apply (subst if_P)
prefer 3 apply (subst if_not_P, blast+)
done
lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"
by (subst split_if, blast)
lemmas if_splits = split_if split_if_asm
lemma if_def2: "(if Q then x else y) = ((Q --> x) & (~ Q --> y))"
by (rule split_if)
lemma if_cancel: "(if c then x else x) = x"
by (subst split_if, blast)
lemma if_eq_cancel: "(if x = y then y else x) = x"
by (subst split_if, blast)
lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))"
-- {* This form is useful for expanding @{text if}s on the RIGHT of the @{text "==>"} symbol. *}
by (rule split_if)
lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))"
-- {* And this form is useful for expanding @{text if}s on the LEFT. *}
apply (subst split_if, blast)
done
lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) rules
lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) rules
subsubsection {* Actual Installation of the Simplifier *}
use "simpdata.ML"
setup Simplifier.setup
setup "Simplifier.method_setup Splitter.split_modifiers" setup simpsetup
setup Splitter.setup setup Clasimp.setup
declare disj_absorb [simp] conj_absorb [simp]
lemma ex1_eq[iff]: "EX! x. x = t" "EX! x. t = x"
by blast+
theorem choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))"
apply (rule iffI)
apply (rule_tac a = "%x. THE y. P x y" in ex1I)
apply (fast dest!: theI')
apply (fast intro: ext the1_equality [symmetric])
apply (erule ex1E)
apply (rule allI)
apply (rule ex1I)
apply (erule spec)
apply (erule_tac x = "%z. if z = x then y else f z" in allE)
apply (erule impE)
apply (rule allI)
apply (rule_tac P = "xa = x" in case_split_thm)
apply (drule_tac [3] x = x in fun_cong, simp_all)
done
text{*Needs only HOL-lemmas:*}
lemma mk_left_commute:
assumes a: "\<And>x y z. f (f x y) z = f x (f y z)" and
c: "\<And>x y. f x y = f y x"
shows "f x (f y z) = f y (f x z)"
by(rule trans[OF trans[OF c a] arg_cong[OF c, of "f y"]])
subsubsection {* Generic cases and induction *}
constdefs
induct_forall :: "('a => bool) => bool"
"induct_forall P == \<forall>x. P x"
induct_implies :: "bool => bool => bool"
"induct_implies A B == A --> B"
induct_equal :: "'a => 'a => bool"
"induct_equal x y == x = y"
induct_conj :: "bool => bool => bool"
"induct_conj A B == A & B"
lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))"
by (simp only: atomize_all induct_forall_def)
lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)"
by (simp only: atomize_imp induct_implies_def)
lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)"
by (simp only: atomize_eq induct_equal_def)
lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) =
induct_conj (induct_forall A) (induct_forall B)"
by (unfold induct_forall_def induct_conj_def) rules
lemma induct_implies_conj: "induct_implies C (induct_conj A B) =
induct_conj (induct_implies C A) (induct_implies C B)"
by (unfold induct_implies_def induct_conj_def) rules
lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)"
proof
assume r: "induct_conj A B ==> PROP C" and A B
show "PROP C" by (rule r) (simp! add: induct_conj_def)
next
assume r: "A ==> B ==> PROP C" and "induct_conj A B"
show "PROP C" by (rule r) (simp! add: induct_conj_def)+
qed
lemma induct_impliesI: "(A ==> B) ==> induct_implies A B"
by (simp add: induct_implies_def)
lemmas induct_atomize = atomize_conj induct_forall_eq induct_implies_eq induct_equal_eq
lemmas induct_rulify1 [symmetric, standard] = induct_forall_eq induct_implies_eq induct_equal_eq
lemmas induct_rulify2 = induct_forall_def induct_implies_def induct_equal_def induct_conj_def
lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry
hide const induct_forall induct_implies induct_equal induct_conj
text {* Method setup. *}
ML {*
structure InductMethod = InductMethodFun
(struct
val dest_concls = HOLogic.dest_concls;
val cases_default = thm "case_split";
val local_impI = thm "induct_impliesI";
val conjI = thm "conjI";
val atomize = thms "induct_atomize";
val rulify1 = thms "induct_rulify1";
val rulify2 = thms "induct_rulify2";
val localize = [Thm.symmetric (thm "induct_implies_def")];
end);
*}
setup InductMethod.setup
subsection {* Order signatures and orders *}
axclass
ord < type
syntax
"op <" :: "['a::ord, 'a] => bool" ("op <")
"op <=" :: "['a::ord, 'a] => bool" ("op <=")
global
consts
"op <" :: "['a::ord, 'a] => bool" ("(_/ < _)" [50, 51] 50)
"op <=" :: "['a::ord, 'a] => bool" ("(_/ <= _)" [50, 51] 50)
local
syntax (xsymbols)
"op <=" :: "['a::ord, 'a] => bool" ("op \<le>")
"op <=" :: "['a::ord, 'a] => bool" ("(_/ \<le> _)" [50, 51] 50)
syntax (HTML output)
"op <=" :: "['a::ord, 'a] => bool" ("op \<le>")
"op <=" :: "['a::ord, 'a] => bool" ("(_/ \<le> _)" [50, 51] 50)
lemma Not_eq_iff: "((~P) = (~Q)) = (P = Q)"
by blast
subsubsection {* Monotonicity *}
locale mono =
fixes f
assumes mono: "A <= B ==> f A <= f B"
lemmas monoI [intro?] = mono.intro
and monoD [dest?] = mono.mono
constdefs
min :: "['a::ord, 'a] => 'a"
"min a b == (if a <= b then a else b)"
max :: "['a::ord, 'a] => 'a"
"max a b == (if a <= b then b else a)"
lemma min_leastL: "(!!x. least <= x) ==> min least x = least"
by (simp add: min_def)
lemma min_of_mono:
"ALL x y. (f x <= f y) = (x <= y) ==> min (f m) (f n) = f (min m n)"
by (simp add: min_def)
lemma max_leastL: "(!!x. least <= x) ==> max least x = x"
by (simp add: max_def)
lemma max_of_mono:
"ALL x y. (f x <= f y) = (x <= y) ==> max (f m) (f n) = f (max m n)"
by (simp add: max_def)
subsubsection "Orders"
axclass order < ord
order_refl [iff]: "x <= x"
order_trans: "x <= y ==> y <= z ==> x <= z"
order_antisym: "x <= y ==> y <= x ==> x = y"
order_less_le: "(x < y) = (x <= y & x ~= y)"
text {* Reflexivity. *}
lemma order_eq_refl: "!!x::'a::order. x = y ==> x <= y"
-- {* This form is useful with the classical reasoner. *}
apply (erule ssubst)
apply (rule order_refl)
done
lemma order_less_irrefl [iff]: "~ x < (x::'a::order)"
by (simp add: order_less_le)
lemma order_le_less: "((x::'a::order) <= y) = (x < y | x = y)"
-- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
apply (simp add: order_less_le, blast)
done
lemmas order_le_imp_less_or_eq = order_le_less [THEN iffD1, standard]
lemma order_less_imp_le: "!!x::'a::order. x < y ==> x <= y"
by (simp add: order_less_le)
text {* Asymmetry. *}
lemma order_less_not_sym: "(x::'a::order) < y ==> ~ (y < x)"
by (simp add: order_less_le order_antisym)
lemma order_less_asym: "x < (y::'a::order) ==> (~P ==> y < x) ==> P"
apply (drule order_less_not_sym)
apply (erule contrapos_np, simp)
done
lemma order_eq_iff: "!!x::'a::order. (x = y) = (x \<le> y & y \<le> x)"
by (blast intro: order_antisym)
lemma order_antisym_conv: "(y::'a::order) <= x ==> (x <= y) = (x = y)"
by(blast intro:order_antisym)
text {* Transitivity. *}
lemma order_less_trans: "!!x::'a::order. [| x < y; y < z |] ==> x < z"
apply (simp add: order_less_le)
apply (blast intro: order_trans order_antisym)
done
lemma order_le_less_trans: "!!x::'a::order. [| x <= y; y < z |] ==> x < z"
apply (simp add: order_less_le)
apply (blast intro: order_trans order_antisym)
done
lemma order_less_le_trans: "!!x::'a::order. [| x < y; y <= z |] ==> x < z"
apply (simp add: order_less_le)
apply (blast intro: order_trans order_antisym)
done
text {* Useful for simplification, but too risky to include by default. *}
lemma order_less_imp_not_less: "(x::'a::order) < y ==> (~ y < x) = True"
by (blast elim: order_less_asym)
lemma order_less_imp_triv: "(x::'a::order) < y ==> (y < x --> P) = True"
by (blast elim: order_less_asym)
lemma order_less_imp_not_eq: "(x::'a::order) < y ==> (x = y) = False"
by auto
lemma order_less_imp_not_eq2: "(x::'a::order) < y ==> (y = x) = False"
by auto
text {* Other operators. *}
lemma min_leastR: "(!!x::'a::order. least <= x) ==> min x least = least"
apply (simp add: min_def)
apply (blast intro: order_antisym)
done
lemma max_leastR: "(!!x::'a::order. least <= x) ==> max x least = x"
apply (simp add: max_def)
apply (blast intro: order_antisym)
done
subsubsection {* Least value operator *}
constdefs
Least :: "('a::ord => bool) => 'a" (binder "LEAST " 10)
"Least P == THE x. P x & (ALL y. P y --> x <= y)"
-- {* We can no longer use LeastM because the latter requires Hilbert-AC. *}
lemma LeastI2:
"[| P (x::'a::order);
!!y. P y ==> x <= y;
!!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |]
==> Q (Least P)"
apply (unfold Least_def)
apply (rule theI2)
apply (blast intro: order_antisym)+
done
lemma Least_equality:
"[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k"
apply (simp add: Least_def)
apply (rule the_equality)
apply (auto intro!: order_antisym)
done
subsubsection "Linear / total orders"
axclass linorder < order
linorder_linear: "x <= y | y <= x"
lemma linorder_less_linear: "!!x::'a::linorder. x<y | x=y | y<x"
apply (simp add: order_less_le)
apply (insert linorder_linear, blast)
done
lemma linorder_le_less_linear: "!!x::'a::linorder. x\<le>y | y<x"
by (simp add: order_le_less linorder_less_linear)
lemma linorder_le_cases [case_names le ge]:
"((x::'a::linorder) \<le> y ==> P) ==> (y \<le> x ==> P) ==> P"
by (insert linorder_linear, blast)
lemma linorder_cases [case_names less equal greater]:
"((x::'a::linorder) < y ==> P) ==> (x = y ==> P) ==> (y < x ==> P) ==> P"
by (insert linorder_less_linear, blast)
lemma linorder_not_less: "!!x::'a::linorder. (~ x < y) = (y <= x)"
apply (simp add: order_less_le)
apply (insert linorder_linear)
apply (blast intro: order_antisym)
done
lemma linorder_not_le: "!!x::'a::linorder. (~ x <= y) = (y < x)"
apply (simp add: order_less_le)
apply (insert linorder_linear)
apply (blast intro: order_antisym)
done
lemma linorder_neq_iff: "!!x::'a::linorder. (x ~= y) = (x<y | y<x)"
by (cut_tac x = x and y = y in linorder_less_linear, auto)
lemma linorder_neqE: "x ~= (y::'a::linorder) ==> (x < y ==> R) ==> (y < x ==> R) ==> R"
by (simp add: linorder_neq_iff, blast)
lemma linorder_antisym_conv1: "~ (x::'a::linorder) < y ==> (x <= y) = (x = y)"
by(blast intro:order_antisym dest:linorder_not_less[THEN iffD1])
lemma linorder_antisym_conv2: "(x::'a::linorder) <= y ==> (~ x < y) = (x = y)"
by(blast intro:order_antisym dest:linorder_not_less[THEN iffD1])
lemma linorder_antisym_conv3: "~ (y::'a::linorder) < x ==> (~ x < y) = (x = y)"
by(blast intro:order_antisym dest:linorder_not_less[THEN iffD1])
use "antisym_setup.ML";
setup antisym_setup
subsubsection "Min and max on (linear) orders"
lemma min_same [simp]: "min (x::'a::order) x = x"
by (simp add: min_def)
lemma max_same [simp]: "max (x::'a::order) x = x"
by (simp add: max_def)
lemma le_max_iff_disj: "!!z::'a::linorder. (z <= max x y) = (z <= x | z <= y)"
apply (simp add: max_def)
apply (insert linorder_linear)
apply (blast intro: order_trans)
done
lemma le_maxI1: "(x::'a::linorder) <= max x y"
by (simp add: le_max_iff_disj)
lemma le_maxI2: "(y::'a::linorder) <= max x y"
-- {* CANNOT use with @{text "[intro!]"} because blast will give PROOF FAILED. *}
by (simp add: le_max_iff_disj)
lemma less_max_iff_disj: "!!z::'a::linorder. (z < max x y) = (z < x | z < y)"
apply (simp add: max_def order_le_less)
apply (insert linorder_less_linear)
apply (blast intro: order_less_trans)
done
lemma max_le_iff_conj [simp]:
"!!z::'a::linorder. (max x y <= z) = (x <= z & y <= z)"
apply (simp add: max_def)
apply (insert linorder_linear)
apply (blast intro: order_trans)
done
lemma max_less_iff_conj [simp]:
"!!z::'a::linorder. (max x y < z) = (x < z & y < z)"
apply (simp add: order_le_less max_def)
apply (insert linorder_less_linear)
apply (blast intro: order_less_trans)
done
lemma le_min_iff_conj [simp]:
"!!z::'a::linorder. (z <= min x y) = (z <= x & z <= y)"
-- {* @{text "[iff]"} screws up a @{text blast} in MiniML *}
apply (simp add: min_def)
apply (insert linorder_linear)
apply (blast intro: order_trans)
done
lemma min_less_iff_conj [simp]:
"!!z::'a::linorder. (z < min x y) = (z < x & z < y)"
apply (simp add: order_le_less min_def)
apply (insert linorder_less_linear)
apply (blast intro: order_less_trans)
done
lemma min_le_iff_disj: "!!z::'a::linorder. (min x y <= z) = (x <= z | y <= z)"
apply (simp add: min_def)
apply (insert linorder_linear)
apply (blast intro: order_trans)
done
lemma min_less_iff_disj: "!!z::'a::linorder. (min x y < z) = (x < z | y < z)"
apply (simp add: min_def order_le_less)
apply (insert linorder_less_linear)
apply (blast intro: order_less_trans)
done
lemma max_assoc: "!!x::'a::linorder. max (max x y) z = max x (max y z)"
apply(simp add:max_def)
apply(rule conjI)
apply(blast intro:order_trans)
apply(simp add:linorder_not_le)
apply(blast dest: order_less_trans order_le_less_trans)
done
lemma max_commute: "!!x::'a::linorder. max x y = max y x"
apply(simp add:max_def)
apply(simp add:linorder_not_le)
apply(blast dest: order_less_trans)
done
lemmas max_ac = max_assoc max_commute
mk_left_commute[of max,OF max_assoc max_commute]
lemma min_assoc: "!!x::'a::linorder. min (min x y) z = min x (min y z)"
apply(simp add:min_def)
apply(rule conjI)
apply(blast intro:order_trans)
apply(simp add:linorder_not_le)
apply(blast dest: order_less_trans order_le_less_trans)
done
lemma min_commute: "!!x::'a::linorder. min x y = min y x"
apply(simp add:min_def)
apply(simp add:linorder_not_le)
apply(blast dest: order_less_trans)
done
lemmas min_ac = min_assoc min_commute
mk_left_commute[of min,OF min_assoc min_commute]
lemma split_min:
"P (min (i::'a::linorder) j) = ((i <= j --> P(i)) & (~ i <= j --> P(j)))"
by (simp add: min_def)
lemma split_max:
"P (max (i::'a::linorder) j) = ((i <= j --> P(j)) & (~ i <= j --> P(i)))"
by (simp add: max_def)
subsubsection {* Transitivity rules for calculational reasoning *}
lemma order_neq_le_trans: "a ~= b ==> (a::'a::order) <= b ==> a < b"
by (simp add: order_less_le)
lemma order_le_neq_trans: "(a::'a::order) <= b ==> a ~= b ==> a < b"
by (simp add: order_less_le)
lemma order_less_asym': "(a::'a::order) < b ==> b < a ==> P"
by (rule order_less_asym)
subsubsection {* Setup of transitivity reasoner as Solver *}
lemma less_imp_neq: "[| (x::'a::order) < y |] ==> x ~= y"
by (erule contrapos_pn, erule subst, rule order_less_irrefl)
lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y"
by (erule subst, erule ssubst, assumption)
ML_setup {*
(* The setting up of Quasi_Tac serves as a demo. Since there is no
class for quasi orders, the tactics Quasi_Tac.trans_tac and
Quasi_Tac.quasi_tac are not of much use. *)
fun decomp_gen sort sign (Trueprop $ t) =
let fun of_sort t = Sign.of_sort sign (type_of t, sort)
fun dec (Const ("Not", _) $ t) = (
case dec t of
None => None
| Some (t1, rel, t2) => Some (t1, "~" ^ rel, t2))
| dec (Const ("op =", _) $ t1 $ t2) =
if of_sort t1
then Some (t1, "=", t2)
else None
| dec (Const ("op <=", _) $ t1 $ t2) =
if of_sort t1
then Some (t1, "<=", t2)
else None
| dec (Const ("op <", _) $ t1 $ t2) =
if of_sort t1
then Some (t1, "<", t2)
else None
| dec _ = None
in dec t end;
structure Quasi_Tac = Quasi_Tac_Fun (
struct
val le_trans = thm "order_trans";
val le_refl = thm "order_refl";
val eqD1 = thm "order_eq_refl";
val eqD2 = thm "sym" RS thm "order_eq_refl";
val less_reflE = thm "order_less_irrefl" RS thm "notE";
val less_imp_le = thm "order_less_imp_le";
val le_neq_trans = thm "order_le_neq_trans";
val neq_le_trans = thm "order_neq_le_trans";
val less_imp_neq = thm "less_imp_neq";
val decomp_trans = decomp_gen ["HOL.order"];
val decomp_quasi = decomp_gen ["HOL.order"];
end); (* struct *)
structure Order_Tac = Order_Tac_Fun (
struct
val less_reflE = thm "order_less_irrefl" RS thm "notE";
val le_refl = thm "order_refl";
val less_imp_le = thm "order_less_imp_le";
val not_lessI = thm "linorder_not_less" RS thm "iffD2";
val not_leI = thm "linorder_not_le" RS thm "iffD2";
val not_lessD = thm "linorder_not_less" RS thm "iffD1";
val not_leD = thm "linorder_not_le" RS thm "iffD1";
val eqI = thm "order_antisym";
val eqD1 = thm "order_eq_refl";
val eqD2 = thm "sym" RS thm "order_eq_refl";
val less_trans = thm "order_less_trans";
val less_le_trans = thm "order_less_le_trans";
val le_less_trans = thm "order_le_less_trans";
val le_trans = thm "order_trans";
val le_neq_trans = thm "order_le_neq_trans";
val neq_le_trans = thm "order_neq_le_trans";
val less_imp_neq = thm "less_imp_neq";
val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq";
val decomp_part = decomp_gen ["HOL.order"];
val decomp_lin = decomp_gen ["HOL.linorder"];
end); (* struct *)
simpset_ref() := simpset ()
addSolver (mk_solver "Trans_linear" (fn _ => Order_Tac.linear_tac))
addSolver (mk_solver "Trans_partial" (fn _ => Order_Tac.partial_tac));
(* Adding the transitivity reasoners also as safe solvers showed a slight
speed up, but the reasoning strength appears to be not higher (at least
no breaking of additional proofs in the entire HOL distribution, as
of 5 March 2004, was observed). *)
*}
(* Optional setup of methods *)
(*
method_setup trans_partial =
{* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (Order_Tac.partial_tac)) *}
{* transitivity reasoner for partial orders *}
method_setup trans_linear =
{* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (Order_Tac.linear_tac)) *}
{* transitivity reasoner for linear orders *}
*)
(*
declare order.order_refl [simp del] order_less_irrefl [simp del]
can currently not be removed, abel_cancel relies on it.
*)
subsubsection "Bounded quantifiers"
syntax
"_lessAll" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10)
"_lessEx" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10)
"_leAll" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10)
"_leEx" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10)
syntax (xsymbols)
"_lessAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10)
"_lessEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10)
"_leAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
"_leEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
syntax (HOL)
"_lessAll" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10)
"_lessEx" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10)
"_leAll" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10)
"_leEx" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10)
syntax (HTML output)
"_lessAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10)
"_lessEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10)
"_leAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
"_leEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
translations
"ALL x<y. P" => "ALL x. x < y --> P"
"EX x<y. P" => "EX x. x < y & P"
"ALL x<=y. P" => "ALL x. x <= y --> P"
"EX x<=y. P" => "EX x. x <= y & P"
print_translation {*
let
fun all_tr' [Const ("_bound",_) $ Free (v,_),
Const("op -->",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] =
(if v=v' then Syntax.const "_lessAll" $ Syntax.mark_bound v' $ n $ P else raise Match)
| all_tr' [Const ("_bound",_) $ Free (v,_),
Const("op -->",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] =
(if v=v' then Syntax.const "_leAll" $ Syntax.mark_bound v' $ n $ P else raise Match);
fun ex_tr' [Const ("_bound",_) $ Free (v,_),
Const("op &",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] =
(if v=v' then Syntax.const "_lessEx" $ Syntax.mark_bound v' $ n $ P else raise Match)
| ex_tr' [Const ("_bound",_) $ Free (v,_),
Const("op &",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] =
(if v=v' then Syntax.const "_leEx" $ Syntax.mark_bound v' $ n $ P else raise Match)
in
[("ALL ", all_tr'), ("EX ", ex_tr')]
end
*}
end