(* Title: Pure/Isar/proof_context.ML
ID: $Id$
Author: Markus Wenzel, TU Muenchen
The key concept of Isar proof contexts.
*)
val show_structs = ref false;
signature PROOF_CONTEXT =
sig
type context (*= Context.proof*)
type export
val theory_of: context -> theory
val init: theory -> context
val set_body: bool -> context -> context
val restore_body: context -> context -> context
val assms_of: context -> term list
val prems_of: context -> thm list
val fact_index_of: context -> FactIndex.T
val is_fixed: context -> string -> bool
val is_known: context -> string -> bool
val transfer: theory -> context -> context
val pretty_term: context -> term -> Pretty.T
val pretty_typ: context -> typ -> Pretty.T
val pretty_sort: context -> sort -> Pretty.T
val pp: context -> Pretty.pp
val pretty_thm: context -> thm -> Pretty.T
val pretty_thms: context -> thm list -> Pretty.T
val pretty_fact: context -> string * thm list -> Pretty.T
val pretty_proof: context -> Proofterm.proof -> Pretty.T
val pretty_proof_of: context -> bool -> thm -> Pretty.T
val string_of_typ: context -> typ -> string
val string_of_term: context -> term -> string
val string_of_thm: context -> thm -> string
val used_types: context -> string list
val default_type: context -> string -> typ option
val read_typ: context -> string -> typ
val read_typ_syntax: context -> string -> typ
val read_typ_abbrev: context -> string -> typ
val cert_typ: context -> typ -> typ
val cert_typ_syntax: context -> typ -> typ
val cert_typ_abbrev: context -> typ -> typ
val get_skolem: context -> string -> string
val revert_skolem: context -> string -> string
val extern_skolem: context -> term -> term
val read_termTs: context -> (string -> bool) -> (indexname -> typ option)
-> (indexname -> sort option) -> string list -> (string * typ) list
-> term list * (indexname * typ) list
val read_termTs_schematic: context -> (string -> bool) -> (indexname -> typ option)
-> (indexname -> sort option) -> string list -> (string * typ) list
-> term list * (indexname * typ) list
val read_term_legacy: context -> string -> term
val read_term: context -> string -> term
val read_prop: context -> string -> term
val read_prop_schematic: context -> string -> term
val read_terms: context -> string list -> term list
val read_term_pats: typ -> context -> string list -> term list
val read_prop_pats: context -> string list -> term list
val cert_term: context -> term -> term
val cert_prop: context -> term -> term
val cert_term_pats: typ -> context -> term list -> term list
val cert_prop_pats: context -> term list -> term list
val declare_term: term -> context -> context
val infer_type: context -> string -> typ
val inferred_param: string -> context -> (string * typ) * context
val inferred_fixes: context -> (string * typ) list * context
val read_tyname: context -> string -> typ
val read_const: context -> string -> term
val warn_extra_tfrees: context -> context -> context
val generalize: context -> context -> term list -> term list
val export_standard: context -> context -> thm -> thm
val exports: context -> context -> thm -> thm Seq.seq
val goal_exports: context -> context -> thm -> thm Seq.seq
val drop_schematic: indexname * term option -> indexname * term option
val add_binds: (indexname * string option) list -> context -> context
val add_binds_i: (indexname * term option) list -> context -> context
val auto_bind_goal: term list -> context -> context
val auto_bind_facts: term list -> context -> context
val match_bind: bool -> (string list * string) list -> context -> term list * context
val match_bind_i: bool -> (term list * term) list -> context -> term list * context
val read_propp: context * (string * (string list * string list)) list list
-> context * (term * (term list * term list)) list list
val cert_propp: context * (term * (term list * term list)) list list
-> context * (term * (term list * term list)) list list
val read_propp_schematic: context * (string * (string list * string list)) list list
-> context * (term * (term list * term list)) list list
val cert_propp_schematic: context * (term * (term list * term list)) list list
-> context * (term * (term list * term list)) list list
val bind_propp: context * (string * (string list * string list)) list list
-> context * (term list list * (context -> context))
val bind_propp_i: context * (term * (term list * term list)) list list
-> context * (term list list * (context -> context))
val bind_propp_schematic: context * (string * (string list * string list)) list list
-> context * (term list list * (context -> context))
val bind_propp_schematic_i: context * (term * (term list * term list)) list list
-> context * (term list list * (context -> context))
val fact_tac: thm list -> int -> tactic
val some_fact_tac: context -> int -> tactic
val get_thm: context -> thmref -> thm
val get_thm_closure: context -> thmref -> thm
val get_thms: context -> thmref -> thm list
val get_thms_closure: context -> thmref -> thm list
val valid_thms: context -> string * thm list -> bool
val lthms_containing: context -> FactIndex.spec -> (string * thm list) list
val extern_thm: context -> string -> xstring
val qualified_names: context -> context
val no_base_names: context -> context
val custom_accesses: (string list -> string list list) -> context -> context
val restore_naming: context -> context -> context
val hide_thms: bool -> string list -> context -> context
val put_thms: string * thm list option -> context -> context
val note_thmss:
((bstring * attribute list) * (thmref * attribute list) list) list ->
context -> (bstring * thm list) list * context
val note_thmss_i:
((bstring * attribute list) * (thm list * attribute list) list) list ->
context -> (bstring * thm list) list * context
val read_vars: (string * string option * mixfix) list -> context ->
(string * typ option * mixfix) list * context
val cert_vars: (string * typ option * mixfix) list -> context ->
(string * typ option * mixfix) list * context
val read_vars_legacy: (string * string option * mixfix) list -> context ->
(string * typ option * mixfix) list * context
val cert_vars_legacy: (string * typ option * mixfix) list -> context ->
(string * typ option * mixfix) list * context
val add_fixes: (string * string option * mixfix) list -> context -> string list * context
val add_fixes_i: (string * typ option * mixfix) list -> context -> string list * context
val add_fixes_legacy: (string * typ option * mixfix) list -> context -> string list * context
val invent_fixes: string list -> context -> string list * context
val fix_frees: term -> context -> context
val auto_fixes: context * (term list list * 'a) -> context * (term list list * 'a)
val bind_fixes: string list -> context -> (term -> term) * context
val add_assms: export ->
((string * attribute list) * (string * (string list * string list)) list) list ->
context -> (bstring * thm list) list * context
val add_assms_i: export ->
((string * attribute list) * (term * (term list * term list)) list) list ->
context -> (bstring * thm list) list * context
val assume_export: export
val presume_export: export
val add_view: context -> cterm list -> context -> context
val export_view: cterm list -> context -> context -> thm -> thm
val add_cases: bool -> (string * RuleCases.T option) list -> context -> context
val apply_case: RuleCases.T -> context -> (string * term list) list * context
val get_case: context -> string -> string option list -> RuleCases.T
val verbose: bool ref
val setmp_verbose: ('a -> 'b) -> 'a -> 'b
val print_syntax: context -> unit
val print_binds: context -> unit
val print_lthms: context -> unit
val print_cases: context -> unit
val prems_limit: int ref
val pretty_ctxt: context -> Pretty.T list
val pretty_context: context -> Pretty.T list
val debug: bool ref
val pprint_context: context -> pprint_args -> unit
end;
structure ProofContext: PROOF_CONTEXT =
struct
type context = Context.proof;
val theory_of = Context.theory_of_proof;
val init = Context.init_proof;
(** Isar proof context information **)
type export = bool -> cterm list -> thm -> thm Seq.seq;
datatype ctxt =
Ctxt of
{syntax: (*global/local syntax, structs, mixfixed*)
(Syntax.syntax * Syntax.syntax * (Syntax.syntax -> Syntax.syntax)) *
string list * string list,
fixes: bool * (string * string) list, (*fixes: !!x. _ with proof body flag*)
assms:
((cterm list * export) list * (*assumes and views: A ==> _*)
(string * thm list) list), (*prems: A |- A*)
binds: (term * typ) Vartab.table, (*term bindings*)
thms: NameSpace.naming * (*local thms*)
thm list NameSpace.table * FactIndex.T,
cases: (string * (RuleCases.T * bool)) list, (*local contexts*)
defaults:
typ Vartab.table * (*type constraints*)
sort Vartab.table * (*default sorts*)
string list * (*used type variables*)
term list Symtab.table}; (*type variable occurrences*)
fun make_ctxt (syntax, fixes, assms, binds, thms, cases, defaults) =
Ctxt {syntax = syntax, fixes = fixes, assms = assms, binds = binds,
thms = thms, cases = cases, defaults = defaults};
structure ContextData = ProofDataFun
(
val name = "Isar/context";
type T = ctxt;
fun init thy =
make_ctxt (((Sign.syn_of thy, Sign.syn_of thy, I), [], []), (false, []), ([], []),
Vartab.empty, (NameSpace.default_naming, NameSpace.empty_table, FactIndex.empty), [],
(Vartab.empty, Vartab.empty, [], Symtab.empty));
fun print _ _ = ();
);
val _ = Context.add_setup ContextData.init;
fun rep_context ctxt = ContextData.get ctxt |> (fn Ctxt args => args);
fun map_context f =
ContextData.map (fn Ctxt {syntax, fixes, assms, binds, thms, cases, defaults} =>
make_ctxt (f (syntax, fixes, assms, binds, thms, cases, defaults)));
fun map_syntax f = map_context (fn (syntax, fixes, assms, binds, thms, cases, defaults) =>
(f syntax, fixes, assms, binds, thms, cases, defaults));
fun map_fixes f = map_context (fn (syntax, fixes, assms, binds, thms, cases, defaults) =>
(syntax, f fixes, assms, binds, thms, cases, defaults));
fun map_assms f = map_context (fn (syntax, fixes, assms, binds, thms, cases, defaults) =>
(syntax, fixes, f assms, binds, thms, cases, defaults));
fun map_binds f = map_context (fn (syntax, fixes, assms, binds, thms, cases, defaults) =>
(syntax, fixes, assms, f binds, thms, cases, defaults));
fun map_thms f = map_context (fn (syntax, fixes, assms, binds, thms, cases, defaults) =>
(syntax, fixes, assms, binds, f thms, cases, defaults));
fun map_naming f = map_thms (fn (naming, table, index) => (f naming, table, index));
fun map_cases f = map_context (fn (syntax, fixes, assms, binds, thms, cases, defaults) =>
(syntax, fixes, assms, binds, thms, f cases, defaults));
fun map_defaults f = map_context (fn (syntax, fixes, assms, binds, thms, cases, defaults) =>
(syntax, fixes, assms, binds, thms, cases, f defaults));
val syntax_of = #syntax o rep_context;
val is_body = #1 o #fixes o rep_context;
fun set_body b = map_fixes (fn (_, fixes) => (b, fixes));
fun restore_body ctxt = set_body (is_body ctxt);
val fixes_of = #2 o #fixes o rep_context;
val fixed_names_of = map #2 o fixes_of;
val assumptions_of = #1 o #assms o rep_context;
val assms_of = map Thm.term_of o List.concat o map #1 o assumptions_of;
val prems_of = List.concat o map #2 o #2 o #assms o rep_context;
val binds_of = #binds o rep_context;
val thms_of = #thms o rep_context;
val fact_index_of = #3 o thms_of;
val cases_of = #cases o rep_context;
val defaults_of = #defaults o rep_context;
val type_occs_of = #4 o defaults_of;
fun is_fixed ctxt x = exists (equal x o #2) (fixes_of ctxt);
fun is_known ctxt x = Vartab.defined (#1 (defaults_of ctxt)) (x, ~1) orelse is_fixed ctxt x;
(** syntax **)
(* translation functions *)
fun context_tr' ctxt =
let
val (_, structs, mixfixed) = syntax_of ctxt;
fun tr' (t $ u) = tr' t $ tr' u
| tr' (Abs (x, T, t)) = Abs (x, T, tr' t)
| tr' (t as Free (x, T)) =
let val i = Library.find_index_eq x structs + 1 in
if i = 0 andalso member (op =) mixfixed x then Const (Syntax.fixedN ^ x, T)
else if i = 1 andalso not (! show_structs) then
Syntax.const "_struct" $ Syntax.const "_indexdefault"
else t
end
| tr' a = a;
in tr' end;
(* add syntax *)
local
fun check_mixfix (x, _, mx) =
if mx <> NoSyn andalso mx <> Structure andalso
(can Syntax.dest_internal x orelse can Syntax.dest_skolem x) then
error ("Illegal mixfix syntax for internal/skolem constant " ^ quote x)
else ();
fun mixfix x NONE mx = (Syntax.fixedN ^ x, TypeInfer.mixfixT mx, Syntax.fix_mixfix x mx)
| mixfix x (SOME T) mx = (Syntax.fixedN ^ x, T, Syntax.fix_mixfix x mx);
fun prep_mixfix (_, _, Structure) = NONE
| prep_mixfix (x, opt_T, mx) = SOME (mixfix x opt_T mx);
fun prep_mixfix' (_, _, Structure) = NONE
| prep_mixfix' (x, _, NoSyn) = NONE
| prep_mixfix' (x, opt_T, _) = SOME (x, mixfix x opt_T (Syntax.literal x));
fun prep_struct (x, _, Structure) = SOME x
| prep_struct _ = NONE;
fun mk trs = map Syntax.mk_trfun trs;
fun extend_syntax thy extend (global_syn, syn, mk_syn) =
let
val thy_syn = Sign.syn_of thy;
val mk_syn' = extend o mk_syn;
val (global_syn', syn') =
if Syntax.eq_syntax (global_syn, thy_syn)
then (global_syn, extend syn)
else (thy_syn, mk_syn' thy_syn); (*potentially expensive*)
in (global_syn', syn', mk_syn') end;
in
fun add_syntax decls ctxt = ctxt |> map_syntax (fn syntax =>
let
val (syns, structs, mixfixed) = syntax;
val thy = theory_of ctxt;
val is_logtype = Sign.is_logtype thy;
val structs' = structs @ List.mapPartial prep_struct decls;
val mxs = List.mapPartial (tap check_mixfix #> prep_mixfix) decls;
val (fixed, mxs_output) = Library.split_list (List.mapPartial prep_mixfix' decls);
val extend =
Syntax.extend_const_gram is_logtype ("", false) mxs_output
#> Syntax.extend_const_gram is_logtype ("", true) mxs;
val syns' = extend_syntax thy extend syns;
in (syns', structs', fixed @ mixfixed) end);
fun syn_of' thy ctxt =
let
val (syns, structs, _) = syntax_of ctxt;
val (atrs, trs, trs', atrs') = Syntax.struct_trfuns structs;
val extend = Syntax.extend_trfuns (mk atrs, mk trs, mk trs', mk atrs');
in #2 (extend_syntax thy extend syns) end;
fun syn_of ctxt = syn_of' (theory_of ctxt) ctxt;
end;
fun transfer thy = add_syntax [] o Context.transfer_proof thy;
(** pretty printing **)
fun pretty_term' thy ctxt t = Sign.pretty_term' (syn_of' thy ctxt) thy (context_tr' ctxt t);
fun pretty_term ctxt t = pretty_term' (theory_of ctxt) ctxt (context_tr' ctxt t);
fun pretty_typ ctxt T = Sign.pretty_typ (theory_of ctxt) T;
fun pretty_sort ctxt S = Sign.pretty_sort (theory_of ctxt) S;
fun pretty_classrel ctxt cs = Sign.pretty_classrel (theory_of ctxt) cs;
fun pretty_arity ctxt ar = Sign.pretty_arity (theory_of ctxt) ar;
fun pp ctxt = Pretty.pp (pretty_term ctxt, pretty_typ ctxt, pretty_sort ctxt,
pretty_classrel ctxt, pretty_arity ctxt);
fun pretty_thm ctxt th =
Display.pretty_thm_aux (pp ctxt) false true (assms_of ctxt) th;
fun pretty_thms ctxt [th] = pretty_thm ctxt th
| pretty_thms ctxt ths = Pretty.blk (0, Pretty.fbreaks (map (pretty_thm ctxt) ths));
fun pretty_fact ctxt ("", ths) = pretty_thms ctxt ths
| pretty_fact ctxt (a, [th]) =
Pretty.block [Pretty.str (a ^ ":"), Pretty.brk 1, pretty_thm ctxt th]
| pretty_fact ctxt (a, ths) =
Pretty.block (Pretty.fbreaks (Pretty.str (a ^ ":") :: map (pretty_thm ctxt) ths));
fun pretty_proof ctxt prf =
pretty_term' (ProofSyntax.proof_syntax prf (theory_of ctxt)) ctxt
(ProofSyntax.term_of_proof prf);
fun pretty_proof_of ctxt full th =
pretty_proof ctxt (ProofSyntax.proof_of full th);
val string_of_typ = Pretty.string_of oo pretty_typ;
val string_of_term = Pretty.string_of oo pretty_term;
val string_of_thm = Pretty.string_of oo pretty_thm;
(** default sorts and types **)
val def_sort = Vartab.lookup o #2 o defaults_of;
fun def_type ctxt pattern xi =
let val {binds, defaults = (types, _, _, _), ...} = rep_context ctxt in
(case Vartab.lookup types xi of
NONE =>
if pattern then NONE
else Vartab.lookup binds xi |> Option.map (TypeInfer.polymorphicT o #2)
| some => some)
end;
val used_types = #3 o defaults_of;
fun default_type ctxt x = Vartab.lookup (#1 (defaults_of ctxt)) (x, ~1);
(** prepare types **)
local
fun read_typ_aux read ctxt s =
read (syn_of ctxt) (theory_of ctxt, def_sort ctxt) s;
fun cert_typ_aux cert ctxt raw_T =
cert (theory_of ctxt) raw_T handle TYPE (msg, _, _) => error msg;
in
val read_typ = read_typ_aux Sign.read_typ';
val read_typ_syntax = read_typ_aux Sign.read_typ_syntax';
val read_typ_abbrev = read_typ_aux Sign.read_typ_abbrev';
val cert_typ = cert_typ_aux Sign.certify_typ;
val cert_typ_syntax = cert_typ_aux Sign.certify_typ_syntax;
val cert_typ_abbrev = cert_typ_aux Sign.certify_typ_abbrev;
end;
(* internalize Skolem constants *)
val lookup_skolem = AList.lookup (op =) o fixes_of;
fun get_skolem ctxt x = the_default x (lookup_skolem ctxt x);
fun no_skolem internal x =
if can Syntax.dest_skolem x then
error ("Illegal reference to internal Skolem constant: " ^ quote x)
else if not internal andalso can Syntax.dest_internal x then
error ("Illegal reference to internal variable: " ^ quote x)
else x;
fun intern_skolem ctxt internal =
let
fun intern (t as Free (x, T)) =
if internal x then t
else
(case lookup_skolem ctxt (no_skolem false x) of
SOME x' => Free (x', T)
| NONE => t)
| intern (t $ u) = intern t $ intern u
| intern (Abs (x, T, t)) = Abs (x, T, intern t)
| intern a = a;
in intern end;
(* externalize Skolem constants -- approximation only! *)
fun rev_skolem ctxt =
let val rev_fixes = map Library.swap (fixes_of ctxt)
in AList.lookup (op =) rev_fixes end;
fun revert_skolem ctxt x =
(case rev_skolem ctxt x of
SOME x' => x'
| NONE => perhaps (try Syntax.dest_skolem) x);
fun extern_skolem ctxt =
let
val revert = rev_skolem ctxt;
fun extern (t as Free (x, T)) =
(case revert x of
SOME x' => Free (if lookup_skolem ctxt x' = SOME x then x' else NameSpace.hidden x', T)
| NONE => t)
| extern (t $ u) = extern t $ extern u
| extern (Abs (x, T, t)) = Abs (x, T, extern t)
| extern a = a;
in extern end
(** prepare terms and propositions **)
(*
(1) read / certify wrt. theory of context
(2) intern Skolem constants
(3) expand term bindings
*)
(* read wrt. theory *) (*exception ERROR*)
fun read_def_termTs freeze pp syn thy (types, sorts, used) sTs =
Sign.read_def_terms' pp (Sign.is_logtype thy) syn (thy, types, sorts) used freeze sTs;
fun read_def_termT freeze pp syn thy defaults sT =
apfst hd (read_def_termTs freeze pp syn thy defaults [sT]);
fun read_term_thy freeze pp syn thy defaults s =
#1 (read_def_termT freeze pp syn thy defaults (s, TypeInfer.logicT));
fun read_prop_thy freeze pp syn thy defaults s =
#1 (read_def_termT freeze pp syn thy defaults (s, propT));
fun read_terms_thy freeze pp syn thy defaults =
#1 o read_def_termTs freeze pp syn thy defaults o map (rpair TypeInfer.logicT);
fun read_props_thy freeze pp syn thy defaults =
#1 o read_def_termTs freeze pp syn thy defaults o map (rpair propT);
(* norm_term *)
(*beta normal form for terms (not eta normal form), chase variables in
bindings environment (code taken from Pure/envir.ML)*)
fun unifyT ctxt (T, U) =
let val maxidx = Int.max (Term.maxidx_of_typ T, Term.maxidx_of_typ U)
in #1 (Sign.typ_unify (theory_of ctxt) (T, U) (Vartab.empty, maxidx)) end;
fun norm_term ctxt schematic =
let
(*raised when norm has no effect on a term, to do sharing instead of copying*)
exception SAME;
val binds = binds_of ctxt;
fun norm (t as Var (xi, T)) =
(case Vartab.lookup binds xi of
SOME (u, U) =>
let
val env = unifyT ctxt (T, U) handle Type.TUNIFY =>
raise TYPE ("norm_term: ill-typed variable assignment", [T, U], [t, u]);
val u' = Envir.subst_TVars env u;
in norm u' handle SAME => u' end
| NONE =>
if schematic then raise SAME
else error ("Unbound schematic variable: " ^ Syntax.string_of_vname xi))
| norm (Abs (a, T, body)) = Abs (a, T, norm body)
| norm (Abs (_, _, body) $ t) = normh (subst_bound (t, body))
| norm (f $ t) =
((case norm f of
Abs (_, _, body) => normh (subst_bound (t, body))
| nf => nf $ (norm t handle SAME => t)) handle SAME => f $ norm t)
| norm _ = raise SAME
and normh t = norm t handle SAME => t
in normh end;
(* dummy patterns *)
val prepare_dummies =
let val next = ref 1 in
fn t =>
let val (i, u) = Term.replace_dummy_patterns (! next, t)
in next := i; u end
end;
fun reject_dummies t = Term.no_dummy_patterns t
handle TERM _ => error "Illegal dummy pattern(s) in term";
(* read terms *)
local
fun append_env e1 e2 x = (case e2 x of NONE => e1 x | some => some);
fun gen_read' read app pattern schematic
ctxt internal more_types more_sorts more_used s =
let
val types = append_env (def_type ctxt pattern) more_types;
val sorts = append_env (def_sort ctxt) more_sorts;
val used = used_types ctxt @ more_used;
in
(read (pp ctxt) (syn_of ctxt) (theory_of ctxt) (types, sorts, used) s
handle TERM (msg, _) => error msg)
|> app (intern_skolem ctxt internal)
|> app (if pattern then I else norm_term ctxt schematic)
|> app (if pattern then prepare_dummies else reject_dummies)
end;
fun gen_read read app pattern schematic ctxt =
gen_read' read app pattern schematic ctxt (K false) (K NONE) (K NONE) [];
in
val read_termTs = gen_read' (read_def_termTs false) (apfst o map) false false;
val read_termTs_schematic = gen_read' (read_def_termTs false) (apfst o map) false true;
fun read_term_pats T ctxt =
#1 o gen_read (read_def_termTs false) (apfst o map) true false ctxt o map (rpair T);
val read_prop_pats = read_term_pats propT;
fun read_term_legacy ctxt =
gen_read' (read_term_thy true) I false false ctxt (K true) (K NONE) (K NONE) [];
val read_term = gen_read (read_term_thy true) I false false;
val read_prop = gen_read (read_prop_thy true) I false false;
val read_prop_schematic = gen_read (read_prop_thy true) I false true;
val read_terms = gen_read (read_terms_thy true) map false false;
fun read_props schematic = gen_read (read_props_thy true) map false schematic;
end;
(* certify terms *)
local
fun gen_cert cert pattern schematic ctxt t = t
|> (if pattern then I else norm_term ctxt schematic)
|> (fn t' => cert (pp ctxt) (theory_of ctxt) t'
handle TYPE (msg, _, _) => error msg
| TERM (msg, _) => error msg);
val certify_term = #1 ooo Sign.certify_term;
val certify_prop = #1 ooo Sign.certify_prop;
in
val cert_term = gen_cert certify_term false false;
val cert_prop = gen_cert certify_prop false false;
val cert_props = map oo gen_cert certify_prop false;
fun cert_term_pats _ = map o gen_cert certify_term true false;
val cert_prop_pats = map o gen_cert certify_prop true false;
end;
(* declare terms *)
local
val ins_types = fold_aterms
(fn Free (x, T) => Vartab.update ((x, ~1), T)
| Var v => Vartab.update v
| _ => I);
val ins_sorts = fold_types (fold_atyps
(fn TFree (x, S) => Vartab.update ((x, ~1), S)
| TVar v => Vartab.update v
| _ => I));
val ins_used = fold_term_types (fn t =>
fold_atyps (fn TFree (x, _) => insert (op =) x | _ => I));
val ins_occs = fold_term_types (fn t =>
fold_atyps (fn TFree (x, _) => Symtab.update_multi (x, t) | _ => I));
fun ins_skolem def_ty = fold_rev (fn (x, x') =>
(case def_ty x' of
SOME T => Vartab.update ((x, ~1), T)
| NONE => I));
in
fun declare_syntax t =
map_defaults (fn (types, sorts, used, occ) => (ins_types t types, sorts, used, occ))
#> map_defaults (fn (types, sorts, used, occ) => (types, ins_sorts t sorts, used, occ))
#> map_defaults (fn (types, sorts, used, occ) => (types, sorts, ins_used t used, occ));
fun declare_var (x, opt_T, mx) =
declare_syntax (Free (x, case opt_T of SOME T => T | NONE => TypeInfer.mixfixT mx));
fun declare_term t ctxt =
ctxt
|> declare_syntax t
|> map_defaults (fn (types, sorts, used, occ) => (types, sorts, used, ins_occs t occ))
|> map_defaults (fn (types, sorts, used, occ) =>
(ins_skolem (fn x => Vartab.lookup types (x, ~1)) (fixes_of ctxt) types, sorts, used, occ));
end;
(* inferred types of parameters *)
fun infer_type ctxt x =
(case try (fn () =>
Sign.infer_types (pp ctxt) (theory_of ctxt) (def_type ctxt false) (def_sort ctxt)
(used_types ctxt) true ([Free (x, dummyT)], TypeInfer.logicT)) () of
SOME (Free (_, T), _) => T
| _ => error ("Failed to infer type of fixed variable " ^ quote x));
fun inferred_param x ctxt =
let val T = infer_type ctxt x
in ((x, T), ctxt |> declare_term (Free (x, T))) end;
fun inferred_fixes ctxt =
fold_map inferred_param (rev (fixed_names_of ctxt)) ctxt;
(* type and constant names *)
fun read_tyname ctxt c =
if member (op =) (used_types ctxt) c then
TFree (c, the_default (Sign.defaultS (theory_of ctxt)) (def_sort ctxt (c, ~1)))
else Sign.read_tyname (theory_of ctxt) c;
fun read_const ctxt c =
(case lookup_skolem ctxt c of
SOME c' => Free (c', dummyT)
| NONE => Sign.read_const (theory_of ctxt) c);
(** Hindley-Milner polymorphism **)
(* warn_extra_tfrees *)
fun warn_extra_tfrees ctxt1 ctxt2 =
let
fun occs_typ a (Type (_, Ts)) = exists (occs_typ a) Ts
| occs_typ a (TFree (b, _)) = a = b
| occs_typ _ (TVar _) = false;
fun occs_free a (Free (x, _)) =
(case def_type ctxt1 false (x, ~1) of
SOME T => if occs_typ a T then I else cons (a, x)
| NONE => cons (a, x))
| occs_free _ _ = I;
val occs1 = type_occs_of ctxt1 and occs2 = type_occs_of ctxt2;
val extras = Symtab.fold (fn (a, ts) =>
if Symtab.defined occs1 a then I else fold (occs_free a) ts) occs2 [];
val tfrees = map #1 extras |> sort_distinct string_ord;
val frees = map #2 extras |> sort_distinct string_ord;
in
if null extras then ()
else warning ("Introduced fixed type variable(s): " ^ commas tfrees ^ " in " ^
space_implode " or " (map (string_of_term ctxt2 o Syntax.free) frees));
ctxt2
end;
(* generalize type variables *)
fun generalize_tfrees inner outer =
let
val extra_fixes = fixed_names_of inner \\ fixed_names_of outer;
fun still_fixed (Free (x, _)) = not (member (op =) extra_fixes x)
| still_fixed _ = false;
val occs_inner = type_occs_of inner;
val occs_outer = type_occs_of outer;
fun add a gen =
if Symtab.defined occs_outer a orelse
exists still_fixed (Symtab.lookup_multi occs_inner a)
then gen else a :: gen;
in fn tfrees => fold add tfrees [] end;
fun generalize inner outer ts =
let
val tfrees = generalize_tfrees inner outer (map #1 (fold Term.add_tfrees ts []));
fun gen (x, S) = if member (op =) tfrees x then TVar ((x, 0), S) else TFree (x, S);
in map (Term.map_term_types (Term.map_type_tfree gen)) ts end;
(** export theorems **)
fun common_exports is_goal inner outer =
let
val gen = generalize_tfrees inner outer;
val fixes = fixed_names_of inner \\ fixed_names_of outer;
val asms = Library.drop (length (assumptions_of outer), assumptions_of inner);
val exp_asms = map (fn (cprops, exp) => exp is_goal cprops) asms;
in
Goal.norm_hhf_protect
#> Seq.EVERY (rev exp_asms)
#> Seq.map (fn rule =>
let
val thy = Thm.theory_of_thm rule;
val prop = Thm.full_prop_of rule;
val frees = map (Thm.cterm_of thy) (List.mapPartial (Term.find_free prop) fixes);
val tfrees = gen (Term.add_term_tfree_names (prop, []));
in
rule
|> Drule.forall_intr_list frees
|> Goal.norm_hhf_protect
|> Drule.tvars_intr_list tfrees |> #2
end)
end;
fun export_standard inner outer =
let val exp = common_exports false inner outer in
fn th =>
(case Seq.pull (exp th) of
SOME (th', _) => th' |> Drule.local_standard
| NONE => sys_error "Failed to export theorem")
end;
val exports = common_exports false;
val goal_exports = common_exports true;
(** bindings **)
(* delete_update_binds *)
local
val del_bind = map_binds o Vartab.delete_safe;
fun upd_bind ((x, i), t) =
let
val T = Term.fastype_of t;
val t' =
if null (Term.term_tvars t \\ Term.typ_tvars T) then t
else Var ((x ^ "_has_extra_type_vars_on_rhs", i), T);
in declare_term t' #> map_binds (Vartab.update ((x, i), (t', T))) end;
fun del_upd_bind (xi, NONE) = del_bind xi
| del_upd_bind (xi, SOME t) = upd_bind (xi, t);
in
val delete_update_binds = fold del_upd_bind;
end;
(* simult_matches *)
fun simult_matches ctxt [] = []
| simult_matches ctxt pairs =
let
fun fail () = error "Pattern match failed!";
val maxidx = fold (fn (t1, t2) => fn i =>
Int.max (Int.max (Term.maxidx_of_term t1, Term.maxidx_of_term t2), i)) pairs ~1;
val envs = Unify.smash_unifiers (theory_of ctxt, Envir.empty maxidx,
map swap pairs); (*prefer assignment of variables from patterns*)
val env =
(case Seq.pull envs of
NONE => fail ()
| SOME (env, _) => env); (*ignore further results*)
val domain =
filter_out Term.is_replaced_dummy_pattern (map #1 (Drule.vars_of_terms (map #1 pairs)));
val _ = (*may not assign variables from text*)
if null (map #1 (Envir.alist_of env) inter (map #1 (Drule.vars_of_terms (map #2 pairs))))
then () else fail ();
fun norm_bind (xi, (_, t)) =
if member (op =) domain xi then SOME (xi, Envir.norm_term env t) else NONE;
in List.mapPartial norm_bind (Envir.alist_of env) end;
(* add_binds(_i) *)
local
fun gen_bind prep (xi as (x, _), raw_t) ctxt =
ctxt |> delete_update_binds [(xi, Option.map (prep ctxt) raw_t)];
in
fun drop_schematic (b as (xi, SOME t)) = if null (Term.term_vars t) then b else (xi, NONE)
| drop_schematic b = b;
val add_binds = fold (gen_bind read_term);
val add_binds_i = fold (gen_bind cert_term);
fun auto_bind f ts ctxt = ctxt |> add_binds_i (map drop_schematic (f (theory_of ctxt) ts));
val auto_bind_goal = auto_bind AutoBind.goal;
val auto_bind_facts = auto_bind AutoBind.facts;
end;
(* match_bind(_i) *)
local
fun prep_bind prep_pats (raw_pats, t) ctxt =
let
val ctxt' = declare_term t ctxt;
val pats = prep_pats (fastype_of t) ctxt' raw_pats;
val binds = simult_matches ctxt' (map (rpair t) pats);
in (binds, ctxt') end;
fun gen_binds prep_terms prep_pats gen raw_binds ctxt =
let
val ts = prep_terms ctxt (map snd raw_binds);
val (binds, ctxt') =
apfst List.concat (fold_map (prep_bind prep_pats) (map fst raw_binds ~~ ts) ctxt);
val binds' =
if gen then map #1 binds ~~ generalize ctxt' ctxt (map #2 binds)
else binds;
val binds'' = map (apsnd SOME) binds';
val ctxt'' =
warn_extra_tfrees ctxt
(if gen then
ctxt (*sic!*) |> fold declare_term (map #2 binds') |> add_binds_i binds''
else ctxt' |> add_binds_i binds'');
in (ts, ctxt'') end;
in
val match_bind = gen_binds read_terms read_term_pats;
val match_bind_i = gen_binds (map o cert_term) cert_term_pats;
end;
(* propositions with patterns *)
local
fun prep_propp schematic prep_props prep_pats (context, args) =
let
fun prep (_, (raw_pats1, raw_pats2)) (ctxt, prop :: props) =
let
val ctxt' = declare_term prop ctxt;
val pats = prep_pats ctxt' (raw_pats1 @ raw_pats2); (*simultaneous type inference!*)
in ((prop, splitAt (length raw_pats1, pats)), (ctxt', props)) end
| prep _ _ = sys_error "prep_propp";
val (propp, (context', _)) = (fold_map o fold_map) prep args
(context, prep_props schematic context (List.concat (map (map fst) args)));
in (context', propp) end;
fun matches ctxt (prop, (pats1, pats2)) =
simult_matches ctxt (map (rpair prop) pats1 @ map (rpair (Logic.strip_imp_concl prop)) pats2);
fun gen_bind_propp prepp (ctxt, raw_args) =
let
val (ctxt', args) = prepp (ctxt, raw_args);
val binds = List.concat (List.concat (map (map (matches ctxt')) args));
val propss = map (map #1) args;
(*generalize result: context evaluated now, binds added later*)
val gen = generalize ctxt' ctxt;
fun gen_binds c = c |> add_binds_i (map #1 binds ~~ map SOME (gen (map #2 binds)));
in (ctxt' |> add_binds_i (map (apsnd SOME) binds), (propss, gen_binds)) end;
in
val read_propp = prep_propp false read_props read_prop_pats;
val cert_propp = prep_propp false cert_props cert_prop_pats;
val read_propp_schematic = prep_propp true read_props read_prop_pats;
val cert_propp_schematic = prep_propp true cert_props cert_prop_pats;
val bind_propp = gen_bind_propp read_propp;
val bind_propp_i = gen_bind_propp cert_propp;
val bind_propp_schematic = gen_bind_propp read_propp_schematic;
val bind_propp_schematic_i = gen_bind_propp cert_propp_schematic;
end;
(** theorems **)
(* fact_tac *)
fun comp_incr_tac [] _ st = no_tac st
| comp_incr_tac (th :: ths) i st =
(Goal.compose_hhf_tac (Drule.incr_indexes st th) i APPEND comp_incr_tac ths i) st;
fun fact_tac facts = Tactic.norm_hhf_tac THEN' comp_incr_tac facts;
fun some_fact_tac ctxt = SUBGOAL (fn (goal, i) =>
let
val (_, _, index) = thms_of ctxt;
val facts = FactIndex.could_unify index (Term.strip_all_body goal);
in fact_tac facts i end);
(* get_thm(s) *)
fun retrieve_thms _ pick ctxt (Fact s) =
let
val thy = theory_of ctxt;
val th = Goal.prove thy [] [] (read_prop ctxt s) (K (ALLGOALS (some_fact_tac ctxt)))
handle ERROR msg => cat_error msg "Failed to retrieve literal fact.";
in pick "" [th] end
| retrieve_thms from_thy pick ctxt xthmref =
let
val thy = theory_of ctxt;
val (_, (space, tab), _) = thms_of ctxt;
val thmref = PureThy.map_name_of_thmref (NameSpace.intern space) xthmref;
val name = PureThy.name_of_thmref thmref;
in
(case Symtab.lookup tab name of
SOME ths => map (Thm.transfer thy) (PureThy.select_thm thmref ths)
| NONE => from_thy thy xthmref) |> pick name
end;
val get_thm = retrieve_thms PureThy.get_thms PureThy.single_thm;
val get_thm_closure = retrieve_thms PureThy.get_thms_closure PureThy.single_thm;
val get_thms = retrieve_thms PureThy.get_thms (K I);
val get_thms_closure = retrieve_thms PureThy.get_thms_closure (K I);
(* valid_thms *)
fun valid_thms ctxt (name, ths) =
(case try (fn () => get_thms ctxt (Name name)) () of
NONE => false
| SOME ths' => Thm.eq_thms (ths, ths'));
(* lthms_containing *)
fun lthms_containing ctxt spec =
FactIndex.find (fact_index_of ctxt) spec
|> map ((not o valid_thms ctxt) ? apfst (fn name =>
NameSpace.hidden (if name = "" then "unnamed" else name)));
(* name space operations *)
val extern_thm = NameSpace.extern o #1 o #2 o thms_of;
val qualified_names = map_naming NameSpace.qualified_names;
val no_base_names = map_naming NameSpace.no_base_names;
val custom_accesses = map_naming o NameSpace.custom_accesses;
val restore_naming = map_naming o K o #1 o thms_of;
fun hide_thms fully names = map_thms (fn (naming, (space, tab), index) =>
(naming, (fold (NameSpace.hide fully) names space, tab), index));
(* put_thms *)
fun put_thms ("", NONE) ctxt = ctxt
| put_thms ("", SOME ths) ctxt = ctxt |> map_thms (fn (naming, facts, index) =>
let
val index' = FactIndex.add_local (is_known ctxt) ("", ths) index;
in (naming, facts, index') end)
| put_thms (bname, NONE) ctxt = ctxt |> map_thms (fn (naming, (space, tab), index) =>
let
val name = NameSpace.full naming bname;
val tab' = Symtab.delete_safe name tab;
in (naming, (space, tab'), index) end)
| put_thms (bname, SOME ths) ctxt = ctxt |> map_thms (fn (naming, (space, tab), index) =>
let
val name = NameSpace.full naming bname;
val space' = NameSpace.declare naming name space;
val tab' = Symtab.update (name, ths) tab;
val index' = FactIndex.add_local (is_known ctxt) (name, ths) index;
in (naming, (space', tab'), index') end);
(* note_thmss *)
local
fun gen_note_thmss get = fold_map (fn ((name, more_attrs), ths_attrs) => fn ctxt =>
let
fun app (th, attrs) (ct, ths) =
let val (ct', th') = foldl_map (Thm.proof_attributes (attrs @ more_attrs)) (ct, get ctxt th)
in (ct', th' :: ths) end;
val (ctxt', rev_thms) = fold app ths_attrs (ctxt, []);
val thms = List.concat (rev rev_thms);
in ((name, thms), ctxt' |> put_thms (name, SOME thms)) end);
in
val note_thmss = gen_note_thmss get_thms;
val note_thmss_i = gen_note_thmss (K I);
val note_thmss_accesses = gen_note_thmss get_thms;
val note_thmss_accesses_i = gen_note_thmss (K I);
end;
(** parameters **)
(* variables *)
local
fun prep_vars prep_typ internal legacy =
fold_map (fn (raw_x, raw_T, raw_mx) => fn ctxt =>
let
val x = Syntax.const_name raw_x raw_mx;
val mx = Syntax.fix_mixfix raw_x raw_mx;
val _ =
if not legacy andalso not (Syntax.is_identifier (no_skolem internal x)) then
error ("Illegal variable name: " ^ quote x)
else ();
fun cond_tvars T =
if internal then T
else Type.no_tvars T handle TYPE (msg, _, _) => error msg;
val opt_T = Option.map (cond_tvars o prep_typ ctxt) raw_T;
val var = (x, opt_T, mx);
in (var, ctxt |> declare_var var) end);
in
val read_vars = prep_vars read_typ false false;
val cert_vars = prep_vars cert_typ true false;
val read_vars_legacy = prep_vars read_typ true true;
val cert_vars_legacy = prep_vars cert_typ true true;
end;
(* fixes *)
local
fun no_dups _ [] = ()
| no_dups ctxt dups = error ("Duplicate variable(s): " ^ commas_quote dups);
fun gen_fixes prep raw_vars ctxt =
let
val (ys, zs) = split_list (fixes_of ctxt);
val (vars, ctxt') = prep raw_vars ctxt;
val xs = map #1 vars;
val _ = no_dups ctxt (duplicates xs);
val xs' =
if is_body ctxt then Term.variantlist (map Syntax.skolem xs, zs)
else (no_dups ctxt (xs inter_string ys); no_dups ctxt (xs inter_string zs); xs);
val vars' = map2 (fn x' => fn (_, T, mx) => (x', T, mx)) xs' vars;
in
ctxt'
|> map_fixes (fn (b, fixes) => (b, rev (xs ~~ xs') @ fixes))
|> add_syntax vars'
|> fold declare_var vars'
|> pair xs'
end;
in
val add_fixes = gen_fixes read_vars;
val add_fixes_i = gen_fixes cert_vars;
val add_fixes_legacy = gen_fixes cert_vars_legacy;
end;
(* invent fixes *)
fun invent_fixes xs ctxt =
ctxt
|> set_body true
|> add_fixes_i (map (fn x => (x, NONE, NoSyn)) xs)
||> restore_body ctxt;
(* fixes vs. frees *)
fun fix_frees t ctxt =
let
fun add (Free (x, T)) = if is_fixed ctxt x then I else insert (op =) (x, SOME T, NoSyn)
| add _ = I;
val fixes = rev (fold_aterms add t []);
in
ctxt
|> declare_term t
|> set_body false
|> (snd o add_fixes_i fixes)
|> restore_body ctxt
end;
fun auto_fixes (arg as (ctxt, (propss, x))) =
if is_body ctxt then arg
else ((fold o fold) fix_frees propss ctxt, (propss, x));
fun bind_fixes xs ctxt =
let
val (_, ctxt') = ctxt |> add_fixes_i (map (fn x => (x, NONE, NoSyn)) xs);
fun bind (t as Free (x, T)) =
if member (op =) xs x then
(case lookup_skolem ctxt' x of SOME x' => Free (x', T) | NONE => t)
else t
| bind (t $ u) = bind t $ bind u
| bind (Abs (x, T, t)) = Abs (x, T, bind t)
| bind a = a;
in (bind, ctxt') end;
(** assumptions **)
(* generic assms *)
local
fun gen_assm ((name, attrs), props) ctxt =
let
val cprops = map (Thm.cterm_of (theory_of ctxt)) props;
val asms = map (Goal.norm_hhf o Thm.assume) cprops;
val ths = map (fn th => ([th], [])) asms;
val ([(_, thms)], ctxt') =
ctxt
|> auto_bind_facts props
|> note_thmss_i [((name, attrs), ths)];
in ((cprops, (name, asms), (name, thms)), ctxt') end;
fun gen_assms prepp exp args ctxt =
let
val (propss, ctxt1) = swap (prepp (ctxt, map snd args));
val (results, ctxt2) = fold_map gen_assm (map fst args ~~ propss) ctxt1;
val new_asms = List.concat (map #1 results);
val new_prems = map #2 results;
val ctxt3 = ctxt2
|> map_assms (fn (asms, prems) => (asms @ [(new_asms, exp)], prems @ new_prems))
val ctxt4 = ctxt3
|> put_thms ("prems", SOME (prems_of ctxt3));
in (map #3 results, warn_extra_tfrees ctxt ctxt4) end;
in
val add_assms = gen_assms (apsnd #1 o bind_propp);
val add_assms_i = gen_assms (apsnd #1 o bind_propp_i);
end;
(* basic assumptions *)
fun assume_export true = Seq.single oo Drule.implies_intr_protected
| assume_export false = Seq.single oo Drule.implies_intr_list;
fun presume_export _ = assume_export false;
(* additional views *)
fun add_view outer view = map_assms (fn (asms, prems) =>
let
val (asms1, asms2) = splitAt (length (assumptions_of outer), asms);
val asms' = asms1 @ [(view, assume_export)] @ asms2;
in (asms', prems) end);
fun export_view view inner outer = export_standard (add_view outer view inner) outer;
(** cases **)
local
fun rem_case name = remove (fn (x: string, (y, _)) => x = y) name;
fun add_case _ ("", _) cases = cases
| add_case _ (name, NONE) cases = rem_case name cases
| add_case is_proper (name, SOME c) cases = (name, (c, is_proper)) :: rem_case name cases;
fun prep_case name fxs c =
let
fun replace (opt_x :: xs) ((y, T) :: ys) = (the_default y opt_x, T) :: replace xs ys
| replace [] ys = ys
| replace (_ :: _) [] = error ("Too many parameters for case " ^ quote name);
val RuleCases.Case {fixes, assumes, binds, cases} = c;
val fixes' = replace fxs fixes;
val binds' = map drop_schematic binds;
in
if null (fold (Term.add_tvarsT o snd) fixes []) andalso
null (fold (fold Term.add_vars o snd) assumes []) then
RuleCases.Case {fixes = fixes', assumes = assumes, binds = binds', cases = cases}
else error ("Illegal schematic variable(s) in case " ^ quote name)
end;
fun fix (x, T) ctxt =
let
val (bind, ctxt') = bind_fixes [x] ctxt;
val t = bind (Free (x, T));
in (t, ctxt' |> declare_syntax t) end;
in
fun add_cases is_proper = map_cases o fold (add_case is_proper);
fun case_result c ctxt =
let
val RuleCases.Case {fixes, ...} = c;
val (ts, ctxt') = ctxt |> fold_map fix fixes;
val RuleCases.Case {assumes, binds, cases, ...} = RuleCases.apply ts c;
in
ctxt'
|> add_binds_i (map drop_schematic binds)
|> add_cases true (map (apsnd SOME) cases)
|> pair (assumes, (binds, cases))
end;
val apply_case = apfst fst oo case_result;
fun get_case ctxt name xs =
(case AList.lookup (op =) (cases_of ctxt) name of
NONE => error ("Unknown case: " ^ quote name)
| SOME (c, _) => prep_case name xs c);
end;
(** print context information **)
val verbose = ref false;
fun verb f x = if ! verbose then f (x ()) else [];
fun setmp_verbose f x = Library.setmp verbose true f x;
fun pretty_items prt name items =
let
fun prt_itms (name, [x]) = Pretty.block [Pretty.str (name ^ ":"), Pretty.brk 1, prt x]
| prt_itms (name, xs) = Pretty.big_list (name ^ ":") (map prt xs);
in
if null items andalso not (! verbose) then []
else [Pretty.big_list name (map prt_itms items)]
end;
(* local syntax *)
val print_syntax = Syntax.print_syntax o syn_of;
(* term bindings *)
fun pretty_binds ctxt =
let
val binds = binds_of ctxt;
fun prt_bind (xi, (t, T)) = pretty_term ctxt (Logic.mk_equals (Var (xi, T), t));
in
if Vartab.is_empty binds andalso not (! verbose) then []
else [Pretty.big_list "term bindings:" (map prt_bind (Vartab.dest binds))]
end;
val print_binds = Pretty.writeln o Pretty.chunks o pretty_binds;
(* local theorems *)
fun pretty_lthms ctxt =
pretty_items (pretty_thm ctxt) "facts:" (NameSpace.extern_table (#2 (thms_of ctxt)));
val print_lthms = Pretty.writeln o Pretty.chunks o pretty_lthms;
(* local contexts *)
fun pretty_cases ctxt =
let
val prt_term = pretty_term ctxt;
fun prt_let (xi, t) = Pretty.block
[Pretty.quote (prt_term (Var (xi, Term.fastype_of t))), Pretty.str " =", Pretty.brk 1,
Pretty.quote (prt_term t)];
fun prt_asm (a, ts) = Pretty.block (Pretty.breaks
((if a = "" then [] else [Pretty.str (a ^ ":")]) @ map (Pretty.quote o prt_term) ts));
fun prt_sect _ _ _ [] = []
| prt_sect s sep prt xs = [Pretty.block (Pretty.breaks (Pretty.str s ::
List.concat (Library.separate sep (map (Library.single o prt) xs))))];
fun prt_case (name, (fixes, (asms, (lets, cs)))) = Pretty.block (Pretty.fbreaks
(Pretty.str (name ^ ":") ::
prt_sect "fix" [] (Pretty.str o fst) fixes @
prt_sect "let" [Pretty.str "and"] prt_let
(List.mapPartial (fn (xi, SOME t) => SOME (xi, t) | _ => NONE) lets) @
(if forall (null o #2) asms then []
else prt_sect "assume" [Pretty.str "and"] prt_asm asms) @
prt_sect "subcases:" [] (Pretty.str o fst) cs));
fun add_case (_, (_, false)) = I
| add_case (name, (c as RuleCases.Case {fixes, ...}, true)) =
cons (name, (fixes, #1 (case_result c ctxt)));
val cases = fold add_case (cases_of ctxt) [];
in
if null cases andalso not (! verbose) then []
else [Pretty.big_list "cases:" (map prt_case cases)]
end;
val print_cases = Pretty.writeln o Pretty.chunks o pretty_cases;
(* core context *)
val prems_limit = ref 10;
fun pretty_ctxt ctxt =
let
val prt_term = pretty_term ctxt;
(*structures*)
val (_, structs, _) = syntax_of ctxt;
val prt_structs = if null structs then []
else [Pretty.block (Pretty.str "structures:" :: Pretty.brk 1 ::
Pretty.commas (map Pretty.str structs))];
(*fixes*)
fun prt_fix (x, x') =
if x = x' then Pretty.str x
else Pretty.block [Pretty.str x, Pretty.str " =", Pretty.brk 1, prt_term (Syntax.free x')];
val fixes =
rev (filter_out ((can Syntax.dest_internal orf member (op =) structs) o #1) (fixes_of ctxt));
val prt_fixes = if null fixes then []
else [Pretty.block (Pretty.str "fixed variables:" :: Pretty.brk 1 ::
Pretty.commas (map prt_fix fixes))];
(*prems*)
val limit = ! prems_limit;
val prems = prems_of ctxt;
val len = length prems;
val prt_prems = if null prems then []
else [Pretty.big_list "prems:" ((if len <= limit then [] else [Pretty.str "..."]) @
map (pretty_thm ctxt) (Library.drop (len - limit, prems)))];
in prt_structs @ prt_fixes @ prt_prems end;
(* main context *)
fun pretty_context ctxt =
let
val prt_term = pretty_term ctxt;
val prt_typ = pretty_typ ctxt;
val prt_sort = pretty_sort ctxt;
(*theory*)
val pretty_thy = Pretty.block
[Pretty.str "theory:", Pretty.brk 1, Context.pretty_thy (theory_of ctxt)];
(*defaults*)
fun prt_atom prt prtT (x, X) = Pretty.block
[prt x, Pretty.str " ::", Pretty.brk 1, prtT X];
fun prt_var (x, ~1) = prt_term (Syntax.free x)
| prt_var xi = prt_term (Syntax.var xi);
fun prt_varT (x, ~1) = prt_typ (TFree (x, []))
| prt_varT xi = prt_typ (TVar (xi, []));
val prt_defT = prt_atom prt_var prt_typ;
val prt_defS = prt_atom prt_varT prt_sort;
val (types, sorts, used, _) = defaults_of ctxt;
in
verb single (K pretty_thy) @
pretty_ctxt ctxt @
verb pretty_binds (K ctxt) @
verb pretty_lthms (K ctxt) @
verb pretty_cases (K ctxt) @
verb single (fn () => Pretty.big_list "type constraints:" (map prt_defT (Vartab.dest types))) @
verb single (fn () => Pretty.big_list "default sorts:" (map prt_defS (Vartab.dest sorts))) @
verb single (fn () => Pretty.strs ("used type variable names:" :: rev used))
end;
(* toplevel pretty printing *)
val debug = ref false;
fun pprint_context ctxt = Pretty.pprint
(if ! debug then Pretty.quote (Pretty.big_list "proof context:" (pretty_context ctxt))
else Pretty.str "<context>");
end;