(* Title: ZF/AC/OrdQuant.thy
ID: $Id$
Authors: Krzysztof Grabczewski and L C Paulson
Quantifiers and union operator for ordinals.
*)
(*** universal quantifier for ordinals ***)
val prems = Goalw [oall_def]
"[| !!x. x<A ==> P(x) |] ==> ALL x<A. P(x)";
by (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ;
qed "oallI";
Goalw [oall_def] "[| ALL x<A. P(x); x<A |] ==> P(x)";
by (etac (spec RS mp) 1);
by (assume_tac 1) ;
qed "ospec";
val major::prems = Goalw [oall_def]
"[| ALL x<A. P(x); P(x) ==> Q; ~x<A ==> Q |] ==> Q";
by (rtac (major RS allE) 1);
by (REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ;
qed "oallE";
val major::prems = Goal
"[| ALL x<A. P(x); ~x<A ==> Q; P(x) ==> Q |] ==> Q";
by (rtac (major RS oallE) 1);
by (REPEAT (eresolve_tac prems 1)) ;
qed "rev_oallE";
(*Trival rewrite rule; (ALL x<a.P)<->P holds only if a is not 0!*)
Goal "(ALL x<a. True) <-> True";
by (REPEAT (ares_tac [TrueI,oallI,iffI] 1)) ;
qed "oall_simp";
(*Congruence rule for rewriting*)
val prems = Goalw [oall_def]
"[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |] ==> oall(a,P) <-> oall(a',P')";
by (simp_tac (simpset() addsimps prems) 1) ;
qed "oall_cong";
(*** existential quantifier for ordinals ***)
val prems = Goalw [oex_def]
"[| P(x); x<A |] ==> EX x<A. P(x)";
by (REPEAT (ares_tac (prems @ [exI,conjI]) 1)) ;
qed "oexI";
(*Not of the general form for such rules; ~EX has become ALL~ *)
val prems = Goal
"[| ALL x<A. ~P(x) ==> P(a); a<A |] ==> EX x<A. P(x)";
by (rtac classical 1);
by (REPEAT (ares_tac (prems@[oexI,oallI,notI,notE]) 1)) ;
qed "oexCI";
val major::prems = Goalw [oex_def]
"[| EX x<A. P(x); !!x. [| x<A; P(x) |] ==> Q \
\ |] ==> Q";
by (rtac (major RS exE) 1);
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)) ;
qed "oexE";
val prems = Goalw [oex_def]
"[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) \
\ |] ==> oex(a,P) <-> oex(a',P')";
by (simp_tac (simpset() addsimps prems addcongs [conj_cong]) 1) ;
qed "oex_cong";
(*** Rules for Ordinal-Indexed Unions ***)
Goalw [OUnion_def] "[| a<i; b: B(a) |] ==> b: (UN z<i. B(z))";
by (blast_tac (claset() addSEs [ltE]) 1);
qed "OUN_I";
val major::prems = Goalw [OUnion_def]
"[| b : (UN z<i. B(z)); !!a.[| b: B(a); a<i |] ==> R |] ==> R";
by (rtac (major RS CollectE) 1);
by (rtac UN_E 1);
by (REPEAT (ares_tac (ltI::prems) 1)) ;
qed "OUN_E";
Goalw [oex_def] "b : (UN x<i. B(x)) <-> (EX x<i. b : B(x))";
by (fast_tac (claset() addIs [OUN_I] addSEs [OUN_E]) 1) ;
qed "OUN_iff";
val prems = Goal
"[| i=j; !!x. x<j ==> C(x)=D(x) |] ==> (UN x<i. C(x)) = (UN x<j. D(x))";
by (rtac equality_iffI 1);
by (simp_tac (simpset() addcongs [oex_cong] addsimps OUN_iff::prems) 1) ;
qed "OUN_cong";
AddSIs [oallI];
AddIs [oexI, OUN_I];
AddSEs [oexE, OUN_E];
AddEs [rev_oallE];
val Ord_atomize = atomize (("OrdQuant.oall", [ospec])::ZF_conn_pairs,
ZF_mem_pairs);
simpset_ref() := simpset() setmksimps (map mk_eq o Ord_atomize o gen_all)
addsimps [oall_simp, ltD RS beta]
addcongs [oall_cong, oex_cong, OUN_cong];
val major::prems = Goalw [lt_def, oall_def]
"[| i<k; !!x.[| x<k; ALL y<x. P(y) |] ==> P(x) \
\ |] ==> P(i)";
by (rtac (major RS conjE) 1);
by (etac Ord_induct 1 THEN assume_tac 1);
by (fast_tac (claset() addIs prems) 1);
qed "lt_induct";