(* Title: HOLCF/Bifinite.thy
ID: $Id$
Author: Brian Huffman
*)
header {* Bifinite domains and approximation *}
theory Bifinite
imports Cfun
begin
subsection {* Omega-profinite and bifinite domains *}
class profinite = cpo +
fixes approx :: "nat \<Rightarrow> 'a \<rightarrow> 'a"
assumes chain_approx [simp]: "chain approx"
assumes lub_approx_app [simp]: "(\<Squnion>i. approx i\<cdot>x) = x"
assumes approx_idem: "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x"
assumes finite_fixes_approx: "finite {x. approx i\<cdot>x = x}"
class bifinite = profinite + pcpo
lemma finite_range_imp_finite_fixes:
"finite {x. \<exists>y. x = f y} \<Longrightarrow> finite {x. f x = x}"
apply (subgoal_tac "{x. f x = x} \<subseteq> {x. \<exists>y. x = f y}")
apply (erule (1) finite_subset)
apply (clarify, erule subst, rule exI, rule refl)
done
lemma lub_approx [simp]: "(\<Squnion>i. approx i) = (\<Lambda> x. x)"
by (rule ext_cfun, simp add: contlub_cfun_fun)
lemma approx_less: "approx i\<cdot>x \<sqsubseteq> x"
apply (subgoal_tac "approx i\<cdot>x \<sqsubseteq> (\<Squnion>i. approx i\<cdot>x)", simp)
apply (rule is_ub_thelub, simp)
done
lemma approx_strict [simp]: "approx i\<cdot>\<bottom> = \<bottom>"
by (rule UU_I, rule approx_less)
lemma approx_approx1:
"i \<le> j \<Longrightarrow> approx i\<cdot>(approx j\<cdot>x) = approx i\<cdot>x"
apply (rule antisym_less)
apply (rule monofun_cfun_arg [OF approx_less])
apply (rule sq_ord_eq_less_trans [OF approx_idem [symmetric]])
apply (rule monofun_cfun_arg)
apply (rule monofun_cfun_fun)
apply (erule chain_mono [OF chain_approx])
done
lemma approx_approx2:
"j \<le> i \<Longrightarrow> approx i\<cdot>(approx j\<cdot>x) = approx j\<cdot>x"
apply (rule antisym_less)
apply (rule approx_less)
apply (rule sq_ord_eq_less_trans [OF approx_idem [symmetric]])
apply (rule monofun_cfun_fun)
apply (erule chain_mono [OF chain_approx])
done
lemma approx_approx [simp]:
"approx i\<cdot>(approx j\<cdot>x) = approx (min i j)\<cdot>x"
apply (rule_tac x=i and y=j in linorder_le_cases)
apply (simp add: approx_approx1 min_def)
apply (simp add: approx_approx2 min_def)
done
lemma idem_fixes_eq_range:
"\<forall>x. f (f x) = f x \<Longrightarrow> {x. f x = x} = {y. \<exists>x. y = f x}"
by (auto simp add: eq_sym_conv)
lemma finite_approx: "finite {y. \<exists>x. y = approx n\<cdot>x}"
using finite_fixes_approx by (simp add: idem_fixes_eq_range)
lemma finite_image_approx: "finite ((\<lambda>x. approx n\<cdot>x) ` A)"
by (rule finite_subset [OF _ finite_fixes_approx [where i=n]]) auto
lemma finite_range_approx: "finite (range (\<lambda>x. approx n\<cdot>x))"
by (rule finite_image_approx)
lemma compact_approx [simp]: "compact (approx n\<cdot>x)"
proof (rule compactI2)
fix Y::"nat \<Rightarrow> 'a"
assume Y: "chain Y"
have "finite_chain (\<lambda>i. approx n\<cdot>(Y i))"
proof (rule finite_range_imp_finch)
show "chain (\<lambda>i. approx n\<cdot>(Y i))"
using Y by simp
have "range (\<lambda>i. approx n\<cdot>(Y i)) \<subseteq> {x. approx n\<cdot>x = x}"
by clarsimp
thus "finite (range (\<lambda>i. approx n\<cdot>(Y i)))"
using finite_fixes_approx by (rule finite_subset)
qed
hence "\<exists>j. (\<Squnion>i. approx n\<cdot>(Y i)) = approx n\<cdot>(Y j)"
by (simp add: finite_chain_def maxinch_is_thelub Y)
then obtain j where j: "(\<Squnion>i. approx n\<cdot>(Y i)) = approx n\<cdot>(Y j)" ..
assume "approx n\<cdot>x \<sqsubseteq> (\<Squnion>i. Y i)"
hence "approx n\<cdot>(approx n\<cdot>x) \<sqsubseteq> approx n\<cdot>(\<Squnion>i. Y i)"
by (rule monofun_cfun_arg)
hence "approx n\<cdot>x \<sqsubseteq> (\<Squnion>i. approx n\<cdot>(Y i))"
by (simp add: contlub_cfun_arg Y)
hence "approx n\<cdot>x \<sqsubseteq> approx n\<cdot>(Y j)"
using j by simp
hence "approx n\<cdot>x \<sqsubseteq> Y j"
using approx_less by (rule trans_less)
thus "\<exists>j. approx n\<cdot>x \<sqsubseteq> Y j" ..
qed
lemma profinite_compact_eq_approx: "compact x \<Longrightarrow> \<exists>i. approx i\<cdot>x = x"
by (rule admD2) simp_all
lemma profinite_compact_iff: "compact x \<longleftrightarrow> (\<exists>n. approx n\<cdot>x = x)"
apply (rule iffI)
apply (erule profinite_compact_eq_approx)
apply (erule exE)
apply (erule subst)
apply (rule compact_approx)
done
lemma approx_induct:
assumes adm: "adm P" and P: "\<And>n x. P (approx n\<cdot>x)"
shows "P x"
proof -
have "P (\<Squnion>n. approx n\<cdot>x)"
by (rule admD [OF adm], simp, simp add: P)
thus "P x" by simp
qed
lemma profinite_less_ext: "(\<And>i. approx i\<cdot>x \<sqsubseteq> approx i\<cdot>y) \<Longrightarrow> x \<sqsubseteq> y"
apply (subgoal_tac "(\<Squnion>i. approx i\<cdot>x) \<sqsubseteq> (\<Squnion>i. approx i\<cdot>y)", simp)
apply (rule lub_mono, simp, simp, simp)
done
subsection {* Instance for continuous function space *}
lemma finite_range_lemma:
fixes h :: "'a::cpo \<rightarrow> 'b::cpo"
fixes k :: "'c::cpo \<rightarrow> 'd::cpo"
shows "\<lbrakk>finite {y. \<exists>x. y = h\<cdot>x}; finite {y. \<exists>x. y = k\<cdot>x}\<rbrakk>
\<Longrightarrow> finite {g. \<exists>f. g = (\<Lambda> x. k\<cdot>(f\<cdot>(h\<cdot>x)))}"
apply (rule_tac f="\<lambda>g. {(h\<cdot>x, y) |x y. y = g\<cdot>x}" in finite_imageD)
apply (rule_tac B="Pow ({y. \<exists>x. y = h\<cdot>x} \<times> {y. \<exists>x. y = k\<cdot>x})"
in finite_subset)
apply (rule image_subsetI)
apply (clarsimp, fast)
apply simp
apply (rule inj_onI)
apply (clarsimp simp add: expand_set_eq)
apply (rule ext_cfun, simp)
apply (drule_tac x="h\<cdot>x" in spec)
apply (drule_tac x="k\<cdot>(f\<cdot>(h\<cdot>x))" in spec)
apply (drule iffD1, fast)
apply clarsimp
done
instantiation "->" :: (profinite, profinite) profinite
begin
definition
approx_cfun_def:
"approx = (\<lambda>n. \<Lambda> f x. approx n\<cdot>(f\<cdot>(approx n\<cdot>x)))"
instance
apply (intro_classes, unfold approx_cfun_def)
apply simp
apply (simp add: lub_distribs eta_cfun)
apply simp
apply simp
apply (rule finite_range_imp_finite_fixes)
apply (intro finite_range_lemma finite_approx)
done
end
instance "->" :: (profinite, bifinite) bifinite ..
lemma approx_cfun: "approx n\<cdot>f\<cdot>x = approx n\<cdot>(f\<cdot>(approx n\<cdot>x))"
by (simp add: approx_cfun_def)
end