doc-src/TutorialI/Misc/Tree.thy
author paulson
Fri, 05 Jan 2001 18:32:57 +0100
changeset 10795 9e888d60d3e5
parent 9792 bbefb6ce5cb2
child 11456 7eb63f63e6c6
permissions -rw-r--r--
minor edits to Chapters 1-3

(*<*)
theory Tree = Main:
(*>*)

text{*\noindent
Define the datatype of binary trees
*}

datatype 'a tree = Tip | Node "'a tree" 'a "'a tree";(*<*)

consts mirror :: "'a tree \<Rightarrow> 'a tree";
primrec
"mirror Tip = Tip"
"mirror (Node l x r) = Node (mirror r) x (mirror l)";(*>*)

text{*\noindent
and a function @{term"mirror"} that mirrors a binary tree
by swapping subtrees recursively. Prove
*}

lemma mirror_mirror: "mirror(mirror t) = t";
(*<*)
apply(induct_tac t);
by(auto);

consts flatten :: "'a tree => 'a list"
primrec
"flatten Tip = []"
"flatten (Node l x r) = flatten l @ [x] @ flatten r";
(*>*)

text{*\noindent
Define a function @{term"flatten"} that flattens a tree into a list
by traversing it in infix order. Prove
*}

lemma "flatten(mirror t) = rev(flatten t)";
(*<*)
apply(induct_tac t);
by(auto);

end
(*>*)