| author | boehmes |
| Fri, 17 Sep 2010 10:52:35 +0200 | |
| changeset 39483 | 9f0e5684f04b |
| parent 37767 | a2b7a20d6ea3 |
| child 40108 | dbab949c2717 |
| permissions | -rw-r--r-- |
(* Title: HOL/FunDef.thy Author: Alexander Krauss, TU Muenchen *) header {* Function Definitions and Termination Proofs *} theory FunDef imports Wellfounded uses "Tools/prop_logic.ML" "Tools/sat_solver.ML" ("Tools/Function/function_lib.ML") ("Tools/Function/function_common.ML") ("Tools/Function/context_tree.ML") ("Tools/Function/function_core.ML") ("Tools/Function/sum_tree.ML") ("Tools/Function/mutual.ML") ("Tools/Function/pattern_split.ML") ("Tools/Function/function.ML") ("Tools/Function/relation.ML") ("Tools/Function/measure_functions.ML") ("Tools/Function/lexicographic_order.ML") ("Tools/Function/pat_completeness.ML") ("Tools/Function/fun.ML") ("Tools/Function/induction_schema.ML") ("Tools/Function/termination.ML") ("Tools/Function/scnp_solve.ML") ("Tools/Function/scnp_reconstruct.ML") begin subsection {* Definitions with default value. *} definition THE_default :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a" where "THE_default d P = (if (\<exists>!x. P x) then (THE x. P x) else d)" lemma THE_defaultI': "\<exists>!x. P x \<Longrightarrow> P (THE_default d P)" by (simp add: theI' THE_default_def) lemma THE_default1_equality: "\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> THE_default d P = a" by (simp add: the1_equality THE_default_def) lemma THE_default_none: "\<not>(\<exists>!x. P x) \<Longrightarrow> THE_default d P = d" by (simp add:THE_default_def) lemma fundef_ex1_existence: assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))" assumes ex1: "\<exists>!y. G x y" shows "G x (f x)" apply (simp only: f_def) apply (rule THE_defaultI') apply (rule ex1) done lemma fundef_ex1_uniqueness: assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))" assumes ex1: "\<exists>!y. G x y" assumes elm: "G x (h x)" shows "h x = f x" apply (simp only: f_def) apply (rule THE_default1_equality [symmetric]) apply (rule ex1) apply (rule elm) done lemma fundef_ex1_iff: assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))" assumes ex1: "\<exists>!y. G x y" shows "(G x y) = (f x = y)" apply (auto simp:ex1 f_def THE_default1_equality) apply (rule THE_defaultI') apply (rule ex1) done lemma fundef_default_value: assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))" assumes graph: "\<And>x y. G x y \<Longrightarrow> D x" assumes "\<not> D x" shows "f x = d x" proof - have "\<not>(\<exists>y. G x y)" proof assume "\<exists>y. G x y" hence "D x" using graph .. with `\<not> D x` show False .. qed hence "\<not>(\<exists>!y. G x y)" by blast thus ?thesis unfolding f_def by (rule THE_default_none) qed definition in_rel_def[simp]: "in_rel R x y == (x, y) \<in> R" lemma wf_in_rel: "wf R \<Longrightarrow> wfP (in_rel R)" by (simp add: wfP_def) use "Tools/Function/function_lib.ML" use "Tools/Function/function_common.ML" use "Tools/Function/context_tree.ML" use "Tools/Function/function_core.ML" use "Tools/Function/sum_tree.ML" use "Tools/Function/mutual.ML" use "Tools/Function/pattern_split.ML" use "Tools/Function/relation.ML" use "Tools/Function/function.ML" use "Tools/Function/pat_completeness.ML" use "Tools/Function/fun.ML" use "Tools/Function/induction_schema.ML" setup {* Function.setup #> Pat_Completeness.setup #> Function_Fun.setup #> Induction_Schema.setup *} subsection {* Measure Functions *} inductive is_measure :: "('a \<Rightarrow> nat) \<Rightarrow> bool" where is_measure_trivial: "is_measure f" use "Tools/Function/measure_functions.ML" setup MeasureFunctions.setup lemma measure_size[measure_function]: "is_measure size" by (rule is_measure_trivial) lemma measure_fst[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (fst p))" by (rule is_measure_trivial) lemma measure_snd[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (snd p))" by (rule is_measure_trivial) use "Tools/Function/lexicographic_order.ML" setup Lexicographic_Order.setup subsection {* Congruence Rules *} lemma let_cong [fundef_cong]: "M = N \<Longrightarrow> (\<And>x. x = N \<Longrightarrow> f x = g x) \<Longrightarrow> Let M f = Let N g" unfolding Let_def by blast lemmas [fundef_cong] = if_cong image_cong INT_cong UN_cong bex_cong ball_cong imp_cong lemma split_cong [fundef_cong]: "(\<And>x y. (x, y) = q \<Longrightarrow> f x y = g x y) \<Longrightarrow> p = q \<Longrightarrow> split f p = split g q" by (auto simp: split_def) lemma comp_cong [fundef_cong]: "f (g x) = f' (g' x') \<Longrightarrow> (f o g) x = (f' o g') x'" unfolding o_apply . subsection {* Simp rules for termination proofs *} lemma termination_basic_simps[termination_simp]: "x < (y::nat) \<Longrightarrow> x < y + z" "x < z \<Longrightarrow> x < y + z" "x \<le> y \<Longrightarrow> x \<le> y + (z::nat)" "x \<le> z \<Longrightarrow> x \<le> y + (z::nat)" "x < y \<Longrightarrow> x \<le> (y::nat)" by arith+ declare le_imp_less_Suc[termination_simp] lemma prod_size_simp[termination_simp]: "prod_size f g p = f (fst p) + g (snd p) + Suc 0" by (induct p) auto subsection {* Decomposition *} lemma less_by_empty: "A = {} \<Longrightarrow> A \<subseteq> B" and union_comp_emptyL: "\<lbrakk> A O C = {}; B O C = {} \<rbrakk> \<Longrightarrow> (A \<union> B) O C = {}" and union_comp_emptyR: "\<lbrakk> A O B = {}; A O C = {} \<rbrakk> \<Longrightarrow> A O (B \<union> C) = {}" and wf_no_loop: "R O R = {} \<Longrightarrow> wf R" by (auto simp add: wf_comp_self[of R]) subsection {* Reduction Pairs *} definition "reduction_pair P = (wf (fst P) \<and> fst P O snd P \<subseteq> fst P)" lemma reduction_pairI[intro]: "wf R \<Longrightarrow> R O S \<subseteq> R \<Longrightarrow> reduction_pair (R, S)" unfolding reduction_pair_def by auto lemma reduction_pair_lemma: assumes rp: "reduction_pair P" assumes "R \<subseteq> fst P" assumes "S \<subseteq> snd P" assumes "wf S" shows "wf (R \<union> S)" proof - from rp `S \<subseteq> snd P` have "wf (fst P)" "fst P O S \<subseteq> fst P" unfolding reduction_pair_def by auto with `wf S` have "wf (fst P \<union> S)" by (auto intro: wf_union_compatible) moreover from `R \<subseteq> fst P` have "R \<union> S \<subseteq> fst P \<union> S" by auto ultimately show ?thesis by (rule wf_subset) qed definition "rp_inv_image = (\<lambda>(R,S) f. (inv_image R f, inv_image S f))" lemma rp_inv_image_rp: "reduction_pair P \<Longrightarrow> reduction_pair (rp_inv_image P f)" unfolding reduction_pair_def rp_inv_image_def split_def by force subsection {* Concrete orders for SCNP termination proofs *} definition "pair_less = less_than <*lex*> less_than" definition "pair_leq = pair_less^=" definition "max_strict = max_ext pair_less" definition "max_weak = max_ext pair_leq \<union> {({}, {})}" definition "min_strict = min_ext pair_less" definition "min_weak = min_ext pair_leq \<union> {({}, {})}" lemma wf_pair_less[simp]: "wf pair_less" by (auto simp: pair_less_def) text {* Introduction rules for @{text pair_less}/@{text pair_leq} *} lemma pair_leqI1: "a < b \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq" and pair_leqI2: "a \<le> b \<Longrightarrow> s \<le> t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq" and pair_lessI1: "a < b \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less" and pair_lessI2: "a \<le> b \<Longrightarrow> s < t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less" unfolding pair_leq_def pair_less_def by auto text {* Introduction rules for max *} lemma smax_emptyI: "finite Y \<Longrightarrow> Y \<noteq> {} \<Longrightarrow> ({}, Y) \<in> max_strict" and smax_insertI: "\<lbrakk>y \<in> Y; (x, y) \<in> pair_less; (X, Y) \<in> max_strict\<rbrakk> \<Longrightarrow> (insert x X, Y) \<in> max_strict" and wmax_emptyI: "finite X \<Longrightarrow> ({}, X) \<in> max_weak" and wmax_insertI: "\<lbrakk>y \<in> YS; (x, y) \<in> pair_leq; (XS, YS) \<in> max_weak\<rbrakk> \<Longrightarrow> (insert x XS, YS) \<in> max_weak" unfolding max_strict_def max_weak_def by (auto elim!: max_ext.cases) text {* Introduction rules for min *} lemma smin_emptyI: "X \<noteq> {} \<Longrightarrow> (X, {}) \<in> min_strict" and smin_insertI: "\<lbrakk>x \<in> XS; (x, y) \<in> pair_less; (XS, YS) \<in> min_strict\<rbrakk> \<Longrightarrow> (XS, insert y YS) \<in> min_strict" and wmin_emptyI: "(X, {}) \<in> min_weak" and wmin_insertI: "\<lbrakk>x \<in> XS; (x, y) \<in> pair_leq; (XS, YS) \<in> min_weak\<rbrakk> \<Longrightarrow> (XS, insert y YS) \<in> min_weak" by (auto simp: min_strict_def min_weak_def min_ext_def) text {* Reduction Pairs *} lemma max_ext_compat: assumes "R O S \<subseteq> R" shows "max_ext R O (max_ext S \<union> {({},{})}) \<subseteq> max_ext R" using assms apply auto apply (elim max_ext.cases) apply rule apply auto[3] apply (drule_tac x=xa in meta_spec) apply simp apply (erule bexE) apply (drule_tac x=xb in meta_spec) by auto lemma max_rpair_set: "reduction_pair (max_strict, max_weak)" unfolding max_strict_def max_weak_def apply (intro reduction_pairI max_ext_wf) apply simp apply (rule max_ext_compat) by (auto simp: pair_less_def pair_leq_def) lemma min_ext_compat: assumes "R O S \<subseteq> R" shows "min_ext R O (min_ext S \<union> {({},{})}) \<subseteq> min_ext R" using assms apply (auto simp: min_ext_def) apply (drule_tac x=ya in bspec, assumption) apply (erule bexE) apply (drule_tac x=xc in bspec) apply assumption by auto lemma min_rpair_set: "reduction_pair (min_strict, min_weak)" unfolding min_strict_def min_weak_def apply (intro reduction_pairI min_ext_wf) apply simp apply (rule min_ext_compat) by (auto simp: pair_less_def pair_leq_def) subsection {* Tool setup *} use "Tools/Function/termination.ML" use "Tools/Function/scnp_solve.ML" use "Tools/Function/scnp_reconstruct.ML" setup {* ScnpReconstruct.setup *} ML_val -- "setup inactive" {* Context.theory_map (Function_Common.set_termination_prover (ScnpReconstruct.decomp_scnp_tac [ScnpSolve.MAX, ScnpSolve.MIN, ScnpSolve.MS])) *} end