(* Title: HOL/Library/Primes.thy
ID: $Id$
Author: Christophe Tabacznyj and Lawrence C Paulson
Copyright 1996 University of Cambridge
*)
header {* The Greatest Common Divisor and Euclid's algorithm *}
theory Primes
imports Main
begin
text {*
See \cite{davenport92}.
\bigskip
*}
consts
gcd :: "nat \<times> nat => nat" -- {* Euclid's algorithm *}
recdef gcd "measure ((\<lambda>(m, n). n) :: nat \<times> nat => nat)"
"gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))"
constdefs
is_gcd :: "nat => nat => nat => bool" -- {* @{term gcd} as a relation *}
"is_gcd p m n == p dvd m \<and> p dvd n \<and>
(\<forall>d. d dvd m \<and> d dvd n --> d dvd p)"
coprime :: "nat => nat => bool"
"coprime m n == gcd (m, n) = 1"
prime :: "nat set"
"prime == {p. 1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p)}"
lemma gcd_induct:
"(!!m. P m 0) ==>
(!!m n. 0 < n ==> P n (m mod n) ==> P m n)
==> P (m::nat) (n::nat)"
apply (induct m n rule: gcd.induct)
apply (case_tac "n = 0")
apply simp_all
done
lemma gcd_0 [simp]: "gcd (m, 0) = m"
apply simp
done
lemma gcd_non_0: "0 < n ==> gcd (m, n) = gcd (n, m mod n)"
apply simp
done
declare gcd.simps [simp del]
lemma gcd_1 [simp]: "gcd (m, Suc 0) = 1"
apply (simp add: gcd_non_0)
done
text {*
\medskip @{term "gcd (m, n)"} divides @{text m} and @{text n}. The
conjunctions don't seem provable separately.
*}
lemma gcd_dvd1 [iff]: "gcd (m, n) dvd m"
and gcd_dvd2 [iff]: "gcd (m, n) dvd n"
apply (induct m n rule: gcd_induct)
apply (simp_all add: gcd_non_0)
apply (blast dest: dvd_mod_imp_dvd)
done
text {*
\medskip Maximality: for all @{term m}, @{term n}, @{term k}
naturals, if @{term k} divides @{term m} and @{term k} divides
@{term n} then @{term k} divides @{term "gcd (m, n)"}.
*}
lemma gcd_greatest: "k dvd m ==> k dvd n ==> k dvd gcd (m, n)"
apply (induct m n rule: gcd_induct)
apply (simp_all add: gcd_non_0 dvd_mod)
done
lemma gcd_greatest_iff [iff]: "(k dvd gcd (m, n)) = (k dvd m \<and> k dvd n)"
apply (blast intro!: gcd_greatest intro: dvd_trans)
done
lemma gcd_zero: "(gcd (m, n) = 0) = (m = 0 \<and> n = 0)"
by (simp only: dvd_0_left_iff [THEN sym] gcd_greatest_iff)
text {*
\medskip Function gcd yields the Greatest Common Divisor.
*}
lemma is_gcd: "is_gcd (gcd (m, n)) m n"
apply (simp add: is_gcd_def gcd_greatest)
done
text {*
\medskip Uniqueness of GCDs.
*}
lemma is_gcd_unique: "is_gcd m a b ==> is_gcd n a b ==> m = n"
apply (simp add: is_gcd_def)
apply (blast intro: dvd_anti_sym)
done
lemma is_gcd_dvd: "is_gcd m a b ==> k dvd a ==> k dvd b ==> k dvd m"
apply (auto simp add: is_gcd_def)
done
text {*
\medskip Commutativity
*}
lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
apply (auto simp add: is_gcd_def)
done
lemma gcd_commute: "gcd (m, n) = gcd (n, m)"
apply (rule is_gcd_unique)
apply (rule is_gcd)
apply (subst is_gcd_commute)
apply (simp add: is_gcd)
done
lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
apply (rule is_gcd_unique)
apply (rule is_gcd)
apply (simp add: is_gcd_def)
apply (blast intro: dvd_trans)
done
lemma gcd_0_left [simp]: "gcd (0, m) = m"
apply (simp add: gcd_commute [of 0])
done
lemma gcd_1_left [simp]: "gcd (Suc 0, m) = 1"
apply (simp add: gcd_commute [of "Suc 0"])
done
text {*
\medskip Multiplication laws
*}
lemma gcd_mult_distrib2: "k * gcd (m, n) = gcd (k * m, k * n)"
-- {* \cite[page 27]{davenport92} *}
apply (induct m n rule: gcd_induct)
apply simp
apply (case_tac "k = 0")
apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
done
lemma gcd_mult [simp]: "gcd (k, k * n) = k"
apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
done
lemma gcd_self [simp]: "gcd (k, k) = k"
apply (rule gcd_mult [of k 1, simplified])
done
lemma relprime_dvd_mult: "gcd (k, n) = 1 ==> k dvd m * n ==> k dvd m"
apply (insert gcd_mult_distrib2 [of m k n])
apply simp
apply (erule_tac t = m in ssubst)
apply simp
done
lemma relprime_dvd_mult_iff: "gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)"
apply (blast intro: relprime_dvd_mult dvd_trans)
done
lemma prime_imp_relprime: "p \<in> prime ==> \<not> p dvd n ==> gcd (p, n) = 1"
apply (auto simp add: prime_def)
apply (drule_tac x = "gcd (p, n)" in spec)
apply auto
apply (insert gcd_dvd2 [of p n])
apply simp
done
lemma two_is_prime: "2 \<in> prime"
apply (auto simp add: prime_def)
apply (case_tac m)
apply (auto dest!: dvd_imp_le)
done
text {*
This theorem leads immediately to a proof of the uniqueness of
factorization. If @{term p} divides a product of primes then it is
one of those primes.
*}
lemma prime_dvd_mult: "p \<in> prime ==> p dvd m * n ==> p dvd m \<or> p dvd n"
by (blast intro: relprime_dvd_mult prime_imp_relprime)
lemma prime_dvd_square: "p \<in> prime ==> p dvd m^Suc (Suc 0) ==> p dvd m"
by (auto dest: prime_dvd_mult)
lemma prime_dvd_power_two: "p \<in> prime ==> p dvd m\<twosuperior> ==> p dvd m"
by (rule prime_dvd_square) (simp_all add: power2_eq_square)
text {* \medskip Addition laws *}
lemma gcd_add1 [simp]: "gcd (m + n, n) = gcd (m, n)"
apply (case_tac "n = 0")
apply (simp_all add: gcd_non_0)
done
lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)"
proof -
have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute)
also have "... = gcd (n + m, m)" by (simp add: add_commute)
also have "... = gcd (n, m)" by simp
also have "... = gcd (m, n)" by (rule gcd_commute)
finally show ?thesis .
qed
lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)"
apply (subst add_commute)
apply (rule gcd_add2)
done
lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)"
apply (induct k)
apply (simp_all add: add_assoc)
done
text {* \medskip More multiplication laws *}
lemma gcd_mult_cancel: "gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)"
apply (rule dvd_anti_sym)
apply (rule gcd_greatest)
apply (rule_tac n = k in relprime_dvd_mult)
apply (simp add: gcd_assoc)
apply (simp add: gcd_commute)
apply (simp_all add: mult_commute)
apply (blast intro: dvd_trans)
done
end