(* Title: HOL/Algebra/Galois_Connection.thy
Author: Alasdair Armstrong and Simon Foster
Copyright: Alasdair Armstrong and Simon Foster
*)
theory Galois_Connection
imports Complete_Lattice
begin
section \<open>Galois connections\<close>
subsection \<open>Definition and basic properties\<close>
record ('a, 'b, 'c, 'd) galcon =
orderA :: "('a, 'c) gorder_scheme" ("\<X>\<index>")
orderB :: "('b, 'd) gorder_scheme" ("\<Y>\<index>")
lower :: "'a \<Rightarrow> 'b" ("\<pi>\<^sup>*\<index>")
upper :: "'b \<Rightarrow> 'a" ("\<pi>\<^sub>*\<index>")
type_synonym ('a, 'b) galois = "('a, 'b, unit, unit) galcon"
abbreviation "inv_galcon G \<equiv> \<lparr> orderA = inv_gorder \<Y>\<^bsub>G\<^esub>, orderB = inv_gorder \<X>\<^bsub>G\<^esub>, lower = upper G, upper = lower G \<rparr>"
definition comp_galcon :: "('b, 'c) galois \<Rightarrow> ('a, 'b) galois \<Rightarrow> ('a, 'c) galois" (infixr "\<circ>\<^sub>g" 85)
where "G \<circ>\<^sub>g F = \<lparr> orderA = orderA F, orderB = orderB G, lower = lower G \<circ> lower F, upper = upper F \<circ> upper G \<rparr>"
definition id_galcon :: "'a gorder \<Rightarrow> ('a, 'a) galois" ("I\<^sub>g") where
"I\<^sub>g(A) = \<lparr> orderA = A, orderB = A, lower = id, upper = id \<rparr>"
subsection \<open>Well-typed connections\<close>
locale connection =
fixes G (structure)
assumes is_order_A: "partial_order \<X>"
and is_order_B: "partial_order \<Y>"
and lower_closure: "\<pi>\<^sup>* \<in> carrier \<X> \<rightarrow> carrier \<Y>"
and upper_closure: "\<pi>\<^sub>* \<in> carrier \<Y> \<rightarrow> carrier \<X>"
begin
lemma lower_closed: "x \<in> carrier \<X> \<Longrightarrow> \<pi>\<^sup>* x \<in> carrier \<Y>"
using lower_closure by auto
lemma upper_closed: "y \<in> carrier \<Y> \<Longrightarrow> \<pi>\<^sub>* y \<in> carrier \<X>"
using upper_closure by auto
end
subsection \<open>Galois connections\<close>
locale galois_connection = connection +
assumes galois_property: "\<lbrakk>x \<in> carrier \<X>; y \<in> carrier \<Y>\<rbrakk> \<Longrightarrow> \<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> y \<longleftrightarrow> x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* y"
begin
lemma is_weak_order_A: "weak_partial_order \<X>"
proof -
interpret po: partial_order \<X>
by (metis is_order_A)
show ?thesis ..
qed
lemma is_weak_order_B: "weak_partial_order \<Y>"
proof -
interpret po: partial_order \<Y>
by (metis is_order_B)
show ?thesis ..
qed
lemma right: "\<lbrakk>x \<in> carrier \<X>; y \<in> carrier \<Y>; \<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> y\<rbrakk> \<Longrightarrow> x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* y"
by (metis galois_property)
lemma left: "\<lbrakk>x \<in> carrier \<X>; y \<in> carrier \<Y>; x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* y\<rbrakk> \<Longrightarrow> \<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> y"
by (metis galois_property)
lemma deflation: "y \<in> carrier \<Y> \<Longrightarrow> \<pi>\<^sup>* (\<pi>\<^sub>* y) \<sqsubseteq>\<^bsub>\<Y>\<^esub> y"
by (metis Pi_iff is_weak_order_A left upper_closure weak_partial_order.le_refl)
lemma inflation: "x \<in> carrier \<X> \<Longrightarrow> x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* (\<pi>\<^sup>* x)"
by (metis (no_types, lifting) PiE galois_connection.right galois_connection_axioms is_weak_order_B lower_closure weak_partial_order.le_refl)
lemma lower_iso: "isotone \<X> \<Y> \<pi>\<^sup>*"
proof (auto simp add:isotone_def)
show "weak_partial_order \<X>"
by (metis is_weak_order_A)
show "weak_partial_order \<Y>"
by (metis is_weak_order_B)
fix x y
assume a: "x \<in> carrier \<X>" "y \<in> carrier \<X>" "x \<sqsubseteq>\<^bsub>\<X>\<^esub> y"
have b: "\<pi>\<^sup>* y \<in> carrier \<Y>"
using a(2) lower_closure by blast
then have "\<pi>\<^sub>* (\<pi>\<^sup>* y) \<in> carrier \<X>"
using upper_closure by blast
then have "x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* (\<pi>\<^sup>* y)"
by (meson a inflation is_weak_order_A weak_partial_order.le_trans)
thus "\<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> \<pi>\<^sup>* y"
by (meson b a(1) Pi_iff galois_property lower_closure upper_closure)
qed
lemma upper_iso: "isotone \<Y> \<X> \<pi>\<^sub>*"
apply (auto simp add:isotone_def)
apply (metis is_weak_order_B)
apply (metis is_weak_order_A)
apply (metis (no_types, lifting) Pi_mem deflation is_weak_order_B lower_closure right upper_closure weak_partial_order.le_trans)
done
lemma lower_comp: "x \<in> carrier \<X> \<Longrightarrow> \<pi>\<^sup>* (\<pi>\<^sub>* (\<pi>\<^sup>* x)) = \<pi>\<^sup>* x"
by (meson deflation funcset_mem inflation is_order_B lower_closure lower_iso partial_order.le_antisym upper_closure use_iso2)
lemma lower_comp': "x \<in> carrier \<X> \<Longrightarrow> (\<pi>\<^sup>* \<circ> \<pi>\<^sub>* \<circ> \<pi>\<^sup>*) x = \<pi>\<^sup>* x"
by (simp add: lower_comp)
lemma upper_comp: "y \<in> carrier \<Y> \<Longrightarrow> \<pi>\<^sub>* (\<pi>\<^sup>* (\<pi>\<^sub>* y)) = \<pi>\<^sub>* y"
proof -
assume a1: "y \<in> carrier \<Y>"
hence f1: "\<pi>\<^sub>* y \<in> carrier \<X>" using upper_closure by blast
have f2: "\<pi>\<^sup>* (\<pi>\<^sub>* y) \<sqsubseteq>\<^bsub>\<Y>\<^esub> y" using a1 deflation by blast
have f3: "\<pi>\<^sub>* (\<pi>\<^sup>* (\<pi>\<^sub>* y)) \<in> carrier \<X>"
using f1 lower_closure upper_closure by auto
have "\<pi>\<^sup>* (\<pi>\<^sub>* y) \<in> carrier \<Y>" using f1 lower_closure by blast
thus "\<pi>\<^sub>* (\<pi>\<^sup>* (\<pi>\<^sub>* y)) = \<pi>\<^sub>* y"
by (meson a1 f1 f2 f3 inflation is_order_A partial_order.le_antisym upper_iso use_iso2)
qed
lemma upper_comp': "y \<in> carrier \<Y> \<Longrightarrow> (\<pi>\<^sub>* \<circ> \<pi>\<^sup>* \<circ> \<pi>\<^sub>*) y = \<pi>\<^sub>* y"
by (simp add: upper_comp)
lemma adjoint_idem1: "idempotent \<Y> (\<pi>\<^sup>* \<circ> \<pi>\<^sub>*)"
by (simp add: idempotent_def is_order_B partial_order.eq_is_equal upper_comp)
lemma adjoint_idem2: "idempotent \<X> (\<pi>\<^sub>* \<circ> \<pi>\<^sup>*)"
by (simp add: idempotent_def is_order_A partial_order.eq_is_equal lower_comp)
lemma fg_iso: "isotone \<Y> \<Y> (\<pi>\<^sup>* \<circ> \<pi>\<^sub>*)"
by (metis iso_compose lower_closure lower_iso upper_closure upper_iso)
lemma gf_iso: "isotone \<X> \<X> (\<pi>\<^sub>* \<circ> \<pi>\<^sup>*)"
by (metis iso_compose lower_closure lower_iso upper_closure upper_iso)
lemma semi_inverse1: "x \<in> carrier \<X> \<Longrightarrow> \<pi>\<^sup>* x = \<pi>\<^sup>* (\<pi>\<^sub>* (\<pi>\<^sup>* x))"
by (metis lower_comp)
lemma semi_inverse2: "x \<in> carrier \<Y> \<Longrightarrow> \<pi>\<^sub>* x = \<pi>\<^sub>* (\<pi>\<^sup>* (\<pi>\<^sub>* x))"
by (metis upper_comp)
theorem lower_by_complete_lattice:
assumes "complete_lattice \<Y>" "x \<in> carrier \<X>"
shows "\<pi>\<^sup>*(x) = \<Sqinter>\<^bsub>\<Y>\<^esub> { y \<in> carrier \<Y>. x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>*(y) }"
proof -
interpret Y: complete_lattice \<Y>
by (simp add: assms)
show ?thesis
proof (rule Y.le_antisym)
show x: "\<pi>\<^sup>* x \<in> carrier \<Y>"
using assms(2) lower_closure by blast
show "\<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> \<Sqinter>\<^bsub>\<Y>\<^esub>{y \<in> carrier \<Y>. x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* y}"
proof (rule Y.weak.inf_greatest)
show "{y \<in> carrier \<Y>. x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* y} \<subseteq> carrier \<Y>"
by auto
show "\<pi>\<^sup>* x \<in> carrier \<Y>" by (fact x)
fix z
assume "z \<in> {y \<in> carrier \<Y>. x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* y}"
thus "\<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> z"
using assms(2) left by auto
qed
show "\<Sqinter>\<^bsub>\<Y>\<^esub>{y \<in> carrier \<Y>. x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* y} \<sqsubseteq>\<^bsub>\<Y>\<^esub> \<pi>\<^sup>* x"
proof (rule Y.weak.inf_lower)
show "{y \<in> carrier \<Y>. x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* y} \<subseteq> carrier \<Y>"
by auto
show "\<pi>\<^sup>* x \<in> {y \<in> carrier \<Y>. x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* y}"
proof (auto)
show "\<pi>\<^sup>* x \<in> carrier \<Y>" by (fact x)
show "x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* (\<pi>\<^sup>* x)"
using assms(2) inflation by blast
qed
qed
show "\<Sqinter>\<^bsub>\<Y>\<^esub>{y \<in> carrier \<Y>. x \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* y} \<in> carrier \<Y>"
by (auto intro: Y.weak.inf_closed)
qed
qed
theorem upper_by_complete_lattice:
assumes "complete_lattice \<X>" "y \<in> carrier \<Y>"
shows "\<pi>\<^sub>*(y) = \<Squnion>\<^bsub>\<X>\<^esub> { x \<in> carrier \<X>. \<pi>\<^sup>*(x) \<sqsubseteq>\<^bsub>\<Y>\<^esub> y }"
proof -
interpret X: complete_lattice \<X>
by (simp add: assms)
show ?thesis
proof (rule X.le_antisym)
show y: "\<pi>\<^sub>* y \<in> carrier \<X>"
using assms(2) upper_closure by blast
show "\<pi>\<^sub>* y \<sqsubseteq>\<^bsub>\<X>\<^esub> \<Squnion>\<^bsub>\<X>\<^esub>{x \<in> carrier \<X>. \<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> y}"
proof (rule X.weak.sup_upper)
show "{x \<in> carrier \<X>. \<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> y} \<subseteq> carrier \<X>"
by auto
show "\<pi>\<^sub>* y \<in> {x \<in> carrier \<X>. \<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> y}"
proof (auto)
show "\<pi>\<^sub>* y \<in> carrier \<X>" by (fact y)
show "\<pi>\<^sup>* (\<pi>\<^sub>* y) \<sqsubseteq>\<^bsub>\<Y>\<^esub> y"
by (simp add: assms(2) deflation)
qed
qed
show "\<Squnion>\<^bsub>\<X>\<^esub>{x \<in> carrier \<X>. \<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> y} \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* y"
proof (rule X.weak.sup_least)
show "{x \<in> carrier \<X>. \<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> y} \<subseteq> carrier \<X>"
by auto
show "\<pi>\<^sub>* y \<in> carrier \<X>" by (fact y)
fix z
assume "z \<in> {x \<in> carrier \<X>. \<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> y}"
thus "z \<sqsubseteq>\<^bsub>\<X>\<^esub> \<pi>\<^sub>* y"
by (simp add: assms(2) right)
qed
show "\<Squnion>\<^bsub>\<X>\<^esub>{x \<in> carrier \<X>. \<pi>\<^sup>* x \<sqsubseteq>\<^bsub>\<Y>\<^esub> y} \<in> carrier \<X>"
by (auto intro: X.weak.sup_closed)
qed
qed
end
lemma dual_galois [simp]: " galois_connection \<lparr> orderA = inv_gorder B, orderB = inv_gorder A, lower = f, upper = g \<rparr>
= galois_connection \<lparr> orderA = A, orderB = B, lower = g, upper = f \<rparr>"
by (auto simp add: galois_connection_def galois_connection_axioms_def connection_def dual_order_iff)
definition lower_adjoint :: "('a, 'c) gorder_scheme \<Rightarrow> ('b, 'd) gorder_scheme \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool" where
"lower_adjoint A B f \<equiv> \<exists>g. galois_connection \<lparr> orderA = A, orderB = B, lower = f, upper = g \<rparr>"
definition upper_adjoint :: "('a, 'c) gorder_scheme \<Rightarrow> ('b, 'd) gorder_scheme \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> bool" where
"upper_adjoint A B g \<equiv> \<exists>f. galois_connection \<lparr> orderA = A, orderB = B, lower = f, upper = g \<rparr>"
lemma lower_adjoint_dual [simp]: "lower_adjoint (inv_gorder A) (inv_gorder B) f = upper_adjoint B A f"
by (simp add: lower_adjoint_def upper_adjoint_def)
lemma upper_adjoint_dual [simp]: "upper_adjoint (inv_gorder A) (inv_gorder B) f = lower_adjoint B A f"
by (simp add: lower_adjoint_def upper_adjoint_def)
lemma lower_type: "lower_adjoint A B f \<Longrightarrow> f \<in> carrier A \<rightarrow> carrier B"
by (auto simp add:lower_adjoint_def galois_connection_def galois_connection_axioms_def connection_def)
lemma upper_type: "upper_adjoint A B g \<Longrightarrow> g \<in> carrier B \<rightarrow> carrier A"
by (auto simp add:upper_adjoint_def galois_connection_def galois_connection_axioms_def connection_def)
subsection \<open>Composition of Galois connections\<close>
lemma id_galois: "partial_order A \<Longrightarrow> galois_connection (I\<^sub>g(A))"
by (simp add: id_galcon_def galois_connection_def galois_connection_axioms_def connection_def)
lemma comp_galcon_closed:
assumes "galois_connection G" "galois_connection F" "\<Y>\<^bsub>F\<^esub> = \<X>\<^bsub>G\<^esub>"
shows "galois_connection (G \<circ>\<^sub>g F)"
proof -
interpret F: galois_connection F
by (simp add: assms)
interpret G: galois_connection G
by (simp add: assms)
have "partial_order \<X>\<^bsub>G \<circ>\<^sub>g F\<^esub>"
by (simp add: F.is_order_A comp_galcon_def)
moreover have "partial_order \<Y>\<^bsub>G \<circ>\<^sub>g F\<^esub>"
by (simp add: G.is_order_B comp_galcon_def)
moreover have "\<pi>\<^sup>*\<^bsub>G\<^esub> \<circ> \<pi>\<^sup>*\<^bsub>F\<^esub> \<in> carrier \<X>\<^bsub>F\<^esub> \<rightarrow> carrier \<Y>\<^bsub>G\<^esub>"
using F.lower_closure G.lower_closure assms(3) by auto
moreover have "\<pi>\<^sub>*\<^bsub>F\<^esub> \<circ> \<pi>\<^sub>*\<^bsub>G\<^esub> \<in> carrier \<Y>\<^bsub>G\<^esub> \<rightarrow> carrier \<X>\<^bsub>F\<^esub>"
using F.upper_closure G.upper_closure assms(3) by auto
moreover
have "\<And> x y. \<lbrakk>x \<in> carrier \<X>\<^bsub>F\<^esub>; y \<in> carrier \<Y>\<^bsub>G\<^esub> \<rbrakk> \<Longrightarrow>
(\<pi>\<^sup>*\<^bsub>G\<^esub> (\<pi>\<^sup>*\<^bsub>F\<^esub> x) \<sqsubseteq>\<^bsub>\<Y>\<^bsub>G\<^esub>\<^esub> y) = (x \<sqsubseteq>\<^bsub>\<X>\<^bsub>F\<^esub>\<^esub> \<pi>\<^sub>*\<^bsub>F\<^esub> (\<pi>\<^sub>*\<^bsub>G\<^esub> y))"
by (metis F.galois_property F.lower_closure G.galois_property G.upper_closure assms(3) Pi_iff)
ultimately show ?thesis
by (simp add: comp_galcon_def galois_connection_def galois_connection_axioms_def connection_def)
qed
lemma comp_galcon_right_unit [simp]: "F \<circ>\<^sub>g I\<^sub>g(\<X>\<^bsub>F\<^esub>) = F"
by (simp add: comp_galcon_def id_galcon_def)
lemma comp_galcon_left_unit [simp]: "I\<^sub>g(\<Y>\<^bsub>F\<^esub>) \<circ>\<^sub>g F = F"
by (simp add: comp_galcon_def id_galcon_def)
lemma galois_connectionI:
assumes
"partial_order A" "partial_order B"
"L \<in> carrier A \<rightarrow> carrier B" "R \<in> carrier B \<rightarrow> carrier A"
"isotone A B L" "isotone B A R"
"\<And> x y. \<lbrakk> x \<in> carrier A; y \<in> carrier B \<rbrakk> \<Longrightarrow> L x \<sqsubseteq>\<^bsub>B\<^esub> y \<longleftrightarrow> x \<sqsubseteq>\<^bsub>A\<^esub> R y"
shows "galois_connection \<lparr> orderA = A, orderB = B, lower = L, upper = R \<rparr>"
using assms by (simp add: galois_connection_def connection_def galois_connection_axioms_def)
lemma galois_connectionI':
assumes
"partial_order A" "partial_order B"
"L \<in> carrier A \<rightarrow> carrier B" "R \<in> carrier B \<rightarrow> carrier A"
"isotone A B L" "isotone B A R"
"\<And> X. X \<in> carrier(B) \<Longrightarrow> L(R(X)) \<sqsubseteq>\<^bsub>B\<^esub> X"
"\<And> X. X \<in> carrier(A) \<Longrightarrow> X \<sqsubseteq>\<^bsub>A\<^esub> R(L(X))"
shows "galois_connection \<lparr> orderA = A, orderB = B, lower = L, upper = R \<rparr>"
using assms
by (auto simp add: galois_connection_def connection_def galois_connection_axioms_def, (meson PiE isotone_def weak_partial_order.le_trans)+)
subsection \<open>Retracts\<close>
locale retract = galois_connection +
assumes retract_property: "x \<in> carrier \<X> \<Longrightarrow> \<pi>\<^sub>* (\<pi>\<^sup>* x) \<sqsubseteq>\<^bsub>\<X>\<^esub> x"
begin
lemma retract_inverse: "x \<in> carrier \<X> \<Longrightarrow> \<pi>\<^sub>* (\<pi>\<^sup>* x) = x"
by (meson funcset_mem inflation is_order_A lower_closure partial_order.le_antisym retract_axioms retract_axioms_def retract_def upper_closure)
lemma retract_injective: "inj_on \<pi>\<^sup>* (carrier \<X>)"
by (metis inj_onI retract_inverse)
end
theorem comp_retract_closed:
assumes "retract G" "retract F" "\<Y>\<^bsub>F\<^esub> = \<X>\<^bsub>G\<^esub>"
shows "retract (G \<circ>\<^sub>g F)"
proof -
interpret f: retract F
by (simp add: assms)
interpret g: retract G
by (simp add: assms)
interpret gf: galois_connection "(G \<circ>\<^sub>g F)"
by (simp add: assms(1) assms(2) assms(3) comp_galcon_closed retract.axioms(1))
show ?thesis
proof
fix x
assume "x \<in> carrier \<X>\<^bsub>G \<circ>\<^sub>g F\<^esub>"
thus "le \<X>\<^bsub>G \<circ>\<^sub>g F\<^esub> (\<pi>\<^sub>*\<^bsub>G \<circ>\<^sub>g F\<^esub> (\<pi>\<^sup>*\<^bsub>G \<circ>\<^sub>g F\<^esub> x)) x"
using assms(3) f.inflation f.lower_closed f.retract_inverse g.retract_inverse by (auto simp add: comp_galcon_def)
qed
qed
subsection \<open>Coretracts\<close>
locale coretract = galois_connection +
assumes coretract_property: "y \<in> carrier \<Y> \<Longrightarrow> y \<sqsubseteq>\<^bsub>\<Y>\<^esub> \<pi>\<^sup>* (\<pi>\<^sub>* y)"
begin
lemma coretract_inverse: "y \<in> carrier \<Y> \<Longrightarrow> \<pi>\<^sup>* (\<pi>\<^sub>* y) = y"
by (meson coretract_axioms coretract_axioms_def coretract_def deflation funcset_mem is_order_B lower_closure partial_order.le_antisym upper_closure)
lemma retract_injective: "inj_on \<pi>\<^sub>* (carrier \<Y>)"
by (metis coretract_inverse inj_onI)
end
theorem comp_coretract_closed:
assumes "coretract G" "coretract F" "\<Y>\<^bsub>F\<^esub> = \<X>\<^bsub>G\<^esub>"
shows "coretract (G \<circ>\<^sub>g F)"
proof -
interpret f: coretract F
by (simp add: assms)
interpret g: coretract G
by (simp add: assms)
interpret gf: galois_connection "(G \<circ>\<^sub>g F)"
by (simp add: assms(1) assms(2) assms(3) comp_galcon_closed coretract.axioms(1))
show ?thesis
proof
fix y
assume "y \<in> carrier \<Y>\<^bsub>G \<circ>\<^sub>g F\<^esub>"
thus "le \<Y>\<^bsub>G \<circ>\<^sub>g F\<^esub> y (\<pi>\<^sup>*\<^bsub>G \<circ>\<^sub>g F\<^esub> (\<pi>\<^sub>*\<^bsub>G \<circ>\<^sub>g F\<^esub> y))"
by (simp add: comp_galcon_def assms(3) f.coretract_inverse g.coretract_property g.upper_closed)
qed
qed
subsection \<open>Galois Bijections\<close>
locale galois_bijection = connection +
assumes lower_iso: "isotone \<X> \<Y> \<pi>\<^sup>*"
and upper_iso: "isotone \<Y> \<X> \<pi>\<^sub>*"
and lower_inv_eq: "x \<in> carrier \<X> \<Longrightarrow> \<pi>\<^sub>* (\<pi>\<^sup>* x) = x"
and upper_inv_eq: "y \<in> carrier \<Y> \<Longrightarrow> \<pi>\<^sup>* (\<pi>\<^sub>* y) = y"
begin
lemma lower_bij: "bij_betw \<pi>\<^sup>* (carrier \<X>) (carrier \<Y>)"
by (rule bij_betwI[where g="\<pi>\<^sub>*"], auto intro: upper_inv_eq lower_inv_eq upper_closed lower_closed)
lemma upper_bij: "bij_betw \<pi>\<^sub>* (carrier \<Y>) (carrier \<X>)"
by (rule bij_betwI[where g="\<pi>\<^sup>*"], auto intro: upper_inv_eq lower_inv_eq upper_closed lower_closed)
sublocale gal_bij_conn: galois_connection
apply (unfold_locales, auto)
using lower_closed lower_inv_eq upper_iso use_iso2 apply fastforce
using lower_iso upper_closed upper_inv_eq use_iso2 apply fastforce
done
sublocale gal_bij_ret: retract
by (unfold_locales, simp add: gal_bij_conn.is_weak_order_A lower_inv_eq weak_partial_order.le_refl)
sublocale gal_bij_coret: coretract
by (unfold_locales, simp add: gal_bij_conn.is_weak_order_B upper_inv_eq weak_partial_order.le_refl)
end
theorem comp_galois_bijection_closed:
assumes "galois_bijection G" "galois_bijection F" "\<Y>\<^bsub>F\<^esub> = \<X>\<^bsub>G\<^esub>"
shows "galois_bijection (G \<circ>\<^sub>g F)"
proof -
interpret f: galois_bijection F
by (simp add: assms)
interpret g: galois_bijection G
by (simp add: assms)
interpret gf: galois_connection "(G \<circ>\<^sub>g F)"
by (simp add: assms(3) comp_galcon_closed f.gal_bij_conn.galois_connection_axioms g.gal_bij_conn.galois_connection_axioms galois_connection.axioms(1))
show ?thesis
proof
show "isotone \<X>\<^bsub>G \<circ>\<^sub>g F\<^esub> \<Y>\<^bsub>G \<circ>\<^sub>g F\<^esub> \<pi>\<^sup>*\<^bsub>G \<circ>\<^sub>g F\<^esub>"
by (simp add: comp_galcon_def, metis comp_galcon_def galcon.select_convs(1) galcon.select_convs(2) galcon.select_convs(3) gf.lower_iso)
show "isotone \<Y>\<^bsub>G \<circ>\<^sub>g F\<^esub> \<X>\<^bsub>G \<circ>\<^sub>g F\<^esub> \<pi>\<^sub>*\<^bsub>G \<circ>\<^sub>g F\<^esub>"
by (simp add: gf.upper_iso)
fix x
assume "x \<in> carrier \<X>\<^bsub>G \<circ>\<^sub>g F\<^esub>"
thus "\<pi>\<^sub>*\<^bsub>G \<circ>\<^sub>g F\<^esub> (\<pi>\<^sup>*\<^bsub>G \<circ>\<^sub>g F\<^esub> x) = x"
using assms(3) f.lower_closed f.lower_inv_eq g.lower_inv_eq by (auto simp add: comp_galcon_def)
next
fix y
assume "y \<in> carrier \<Y>\<^bsub>G \<circ>\<^sub>g F\<^esub>"
thus "\<pi>\<^sup>*\<^bsub>G \<circ>\<^sub>g F\<^esub> (\<pi>\<^sub>*\<^bsub>G \<circ>\<^sub>g F\<^esub> y) = y"
by (simp add: comp_galcon_def assms(3) f.upper_inv_eq g.upper_closed g.upper_inv_eq)
qed
qed
end