(* Author: Tobias Nipkow *)
section \<open>1-2 Brother Tree Implementation of Maps\<close>
theory Brother12_Map
imports
Brother12_Set
Map_Specs
begin
fun lookup :: "('a \<times> 'b) bro \<Rightarrow> 'a::linorder \<Rightarrow> 'b option" where
"lookup N0 x = None" |
"lookup (N1 t) x = lookup t x" |
"lookup (N2 l (a,b) r) x =
(case cmp x a of
LT \<Rightarrow> lookup l x |
EQ \<Rightarrow> Some b |
GT \<Rightarrow> lookup r x)"
locale update = insert
begin
fun upd :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a\<times>'b) bro \<Rightarrow> ('a\<times>'b) bro" where
"upd x y N0 = L2 (x,y)" |
"upd x y (N1 t) = n1 (upd x y t)" |
"upd x y (N2 l (a,b) r) =
(case cmp x a of
LT \<Rightarrow> n2 (upd x y l) (a,b) r |
EQ \<Rightarrow> N2 l (a,y) r |
GT \<Rightarrow> n2 l (a,b) (upd x y r))"
definition update :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a\<times>'b) bro \<Rightarrow> ('a\<times>'b) bro" where
"update x y t = tree(upd x y t)"
end
context delete
begin
fun del :: "'a::linorder \<Rightarrow> ('a\<times>'b) bro \<Rightarrow> ('a\<times>'b) bro" where
"del _ N0 = N0" |
"del x (N1 t) = N1 (del x t)" |
"del x (N2 l (a,b) r) =
(case cmp x a of
LT \<Rightarrow> n2 (del x l) (a,b) r |
GT \<Rightarrow> n2 l (a,b) (del x r) |
EQ \<Rightarrow> (case split_min r of
None \<Rightarrow> N1 l |
Some (ab, r') \<Rightarrow> n2 l ab r'))"
definition delete :: "'a::linorder \<Rightarrow> ('a\<times>'b) bro \<Rightarrow> ('a\<times>'b) bro" where
"delete a t = tree (del a t)"
end
subsection "Functional Correctness Proofs"
subsubsection "Proofs for lookup"
lemma lookup_map_of: "t \<in> T h \<Longrightarrow>
sorted1(inorder t) \<Longrightarrow> lookup t x = map_of (inorder t) x"
by(induction h arbitrary: t) (auto simp: map_of_simps split: option.splits)
subsubsection "Proofs for update"
context update
begin
lemma inorder_upd: "t \<in> T h \<Longrightarrow>
sorted1(inorder t) \<Longrightarrow> inorder(upd x y t) = upd_list x y (inorder t)"
by(induction h arbitrary: t) (auto simp: upd_list_simps inorder_n1 inorder_n2)
lemma inorder_update: "t \<in> T h \<Longrightarrow>
sorted1(inorder t) \<Longrightarrow> inorder(update x y t) = upd_list x y (inorder t)"
by(simp add: update_def inorder_upd inorder_tree)
end
subsubsection \<open>Proofs for deletion\<close>
context delete
begin
lemma inorder_del:
"t \<in> T h \<Longrightarrow> sorted1(inorder t) \<Longrightarrow> inorder(del x t) = del_list x (inorder t)"
apply (induction h arbitrary: t)
apply (auto simp: del_list_simps inorder_n2)
apply (auto simp: del_list_simps inorder_n2
inorder_split_min[OF UnI1] inorder_split_min[OF UnI2] split: option.splits)
done
lemma inorder_delete:
"t \<in> T h \<Longrightarrow> sorted1(inorder t) \<Longrightarrow> inorder(delete x t) = del_list x (inorder t)"
by(simp add: delete_def inorder_del inorder_tree)
end
subsection \<open>Invariant Proofs\<close>
subsubsection \<open>Proofs for update\<close>
context update
begin
lemma upd_type:
"(t \<in> B h \<longrightarrow> upd x y t \<in> Bp h) \<and> (t \<in> U h \<longrightarrow> upd x y t \<in> T h)"
apply(induction h arbitrary: t)
apply (simp)
apply (fastforce simp: Bp_if_B n2_type dest: n1_type)
done
lemma update_type:
"t \<in> B h \<Longrightarrow> update x y t \<in> B h \<union> B (Suc h)"
unfolding update_def by (metis upd_type tree_type)
end
subsubsection "Proofs for deletion"
context delete
begin
lemma del_type:
"t \<in> B h \<Longrightarrow> del x t \<in> T h"
"t \<in> U h \<Longrightarrow> del x t \<in> Um h"
proof (induction h arbitrary: x t)
case (Suc h)
{ case 1
then obtain l a b r where [simp]: "t = N2 l (a,b) r" and
lr: "l \<in> T h" "r \<in> T h" "l \<in> B h \<or> r \<in> B h" by auto
have ?case if "x < a"
proof cases
assume "l \<in> B h"
from n2_type3[OF Suc.IH(1)[OF this] lr(2)]
show ?thesis using \<open>x<a\<close> by(simp)
next
assume "l \<notin> B h"
hence "l \<in> U h" "r \<in> B h" using lr by auto
from n2_type1[OF Suc.IH(2)[OF this(1)] this(2)]
show ?thesis using \<open>x<a\<close> by(simp)
qed
moreover
have ?case if "x > a"
proof cases
assume "r \<in> B h"
from n2_type3[OF lr(1) Suc.IH(1)[OF this]]
show ?thesis using \<open>x>a\<close> by(simp)
next
assume "r \<notin> B h"
hence "l \<in> B h" "r \<in> U h" using lr by auto
from n2_type2[OF this(1) Suc.IH(2)[OF this(2)]]
show ?thesis using \<open>x>a\<close> by(simp)
qed
moreover
have ?case if [simp]: "x=a"
proof (cases "split_min r")
case None
show ?thesis
proof cases
assume "r \<in> B h"
with split_minNoneN0[OF this None] lr show ?thesis by(simp)
next
assume "r \<notin> B h"
hence "r \<in> U h" using lr by auto
with split_minNoneN1[OF this None] lr(3) show ?thesis by (simp)
qed
next
case [simp]: (Some br')
obtain b r' where [simp]: "br' = (b,r')" by fastforce
show ?thesis
proof cases
assume "r \<in> B h"
from split_min_type(1)[OF this] n2_type3[OF lr(1)]
show ?thesis by simp
next
assume "r \<notin> B h"
hence "l \<in> B h" and "r \<in> U h" using lr by auto
from split_min_type(2)[OF this(2)] n2_type2[OF this(1)]
show ?thesis by simp
qed
qed
ultimately show ?case by auto
}
{ case 2 with Suc.IH(1) show ?case by auto }
qed auto
lemma delete_type:
"t \<in> B h \<Longrightarrow> delete x t \<in> B h \<union> B(h-1)"
unfolding delete_def
by (cases h) (simp, metis del_type(1) tree_type Suc_eq_plus1 diff_Suc_1)
end
subsection "Overall correctness"
interpretation Map_by_Ordered
where empty = empty and lookup = lookup and update = update.update
and delete = delete.delete and inorder = inorder and inv = "\<lambda>t. \<exists>h. t \<in> B h"
proof (standard, goal_cases)
case 2 thus ?case by(auto intro!: lookup_map_of)
next
case 3 thus ?case by(auto intro!: update.inorder_update)
next
case 4 thus ?case by(auto intro!: delete.inorder_delete)
next
case 6 thus ?case using update.update_type by (metis Un_iff)
next
case 7 thus ?case using delete.delete_type by blast
qed (auto simp: empty_def)
end