src/ZF/Bool.thy
author wenzelm
Thu, 27 Oct 2011 21:02:10 +0200
changeset 45280 9fd6fce8a230
parent 41777 1f7cbe39d425
child 45602 2a858377c3d2
permissions -rw-r--r--
localized quotient data;

(*  Title:      ZF/Bool.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1992  University of Cambridge
*)

header{*Booleans in Zermelo-Fraenkel Set Theory*}

theory Bool imports pair begin

abbreviation
  one  ("1") where
  "1 == succ(0)"

abbreviation
  two  ("2") where
  "2 == succ(1)"

text{*2 is equal to bool, but is used as a number rather than a type.*}

definition "bool == {0,1}"

definition "cond(b,c,d) == if(b=1,c,d)"

definition "not(b) == cond(b,0,1)"

definition
  "and"       :: "[i,i]=>i"      (infixl "and" 70)  where
    "a and b == cond(a,b,0)"

definition
  or          :: "[i,i]=>i"      (infixl "or" 65)  where
    "a or b == cond(a,1,b)"

definition
  xor         :: "[i,i]=>i"      (infixl "xor" 65) where
    "a xor b == cond(a,not(b),b)"


lemmas bool_defs = bool_def cond_def

lemma singleton_0: "{0} = 1"
by (simp add: succ_def)

(* Introduction rules *)

lemma bool_1I [simp,TC]: "1 : bool"
by (simp add: bool_defs )

lemma bool_0I [simp,TC]: "0 : bool"
by (simp add: bool_defs)

lemma one_not_0: "1~=0"
by (simp add: bool_defs )

(** 1=0 ==> R **)
lemmas one_neq_0 = one_not_0 [THEN notE, standard]

lemma boolE:
    "[| c: bool;  c=1 ==> P;  c=0 ==> P |] ==> P"
by (simp add: bool_defs, blast)

(** cond **)

(*1 means true*)
lemma cond_1 [simp]: "cond(1,c,d) = c"
by (simp add: bool_defs )

(*0 means false*)
lemma cond_0 [simp]: "cond(0,c,d) = d"
by (simp add: bool_defs )

lemma cond_type [TC]: "[| b: bool;  c: A(1);  d: A(0) |] ==> cond(b,c,d): A(b)"
by (simp add: bool_defs, blast)

(*For Simp_tac and Blast_tac*)
lemma cond_simple_type: "[| b: bool;  c: A;  d: A |] ==> cond(b,c,d): A"
by (simp add: bool_defs )

lemma def_cond_1: "[| !!b. j(b)==cond(b,c,d) |] ==> j(1) = c"
by simp

lemma def_cond_0: "[| !!b. j(b)==cond(b,c,d) |] ==> j(0) = d"
by simp

lemmas not_1 = not_def [THEN def_cond_1, standard, simp]
lemmas not_0 = not_def [THEN def_cond_0, standard, simp]

lemmas and_1 = and_def [THEN def_cond_1, standard, simp]
lemmas and_0 = and_def [THEN def_cond_0, standard, simp]

lemmas or_1 = or_def [THEN def_cond_1, standard, simp]
lemmas or_0 = or_def [THEN def_cond_0, standard, simp]

lemmas xor_1 = xor_def [THEN def_cond_1, standard, simp]
lemmas xor_0 = xor_def [THEN def_cond_0, standard, simp]

lemma not_type [TC]: "a:bool ==> not(a) : bool"
by (simp add: not_def)

lemma and_type [TC]: "[| a:bool;  b:bool |] ==> a and b : bool"
by (simp add: and_def)

lemma or_type [TC]: "[| a:bool;  b:bool |] ==> a or b : bool"
by (simp add: or_def)

lemma xor_type [TC]: "[| a:bool;  b:bool |] ==> a xor b : bool"
by (simp add: xor_def)

lemmas bool_typechecks = bool_1I bool_0I cond_type not_type and_type
                         or_type xor_type

subsection{*Laws About 'not' *}

lemma not_not [simp]: "a:bool ==> not(not(a)) = a"
by (elim boolE, auto)

lemma not_and [simp]: "a:bool ==> not(a and b) = not(a) or not(b)"
by (elim boolE, auto)

lemma not_or [simp]: "a:bool ==> not(a or b) = not(a) and not(b)"
by (elim boolE, auto)

subsection{*Laws About 'and' *}

lemma and_absorb [simp]: "a: bool ==> a and a = a"
by (elim boolE, auto)

lemma and_commute: "[| a: bool; b:bool |] ==> a and b = b and a"
by (elim boolE, auto)

lemma and_assoc: "a: bool ==> (a and b) and c  =  a and (b and c)"
by (elim boolE, auto)

lemma and_or_distrib: "[| a: bool; b:bool; c:bool |] ==>
       (a or b) and c  =  (a and c) or (b and c)"
by (elim boolE, auto)

subsection{*Laws About 'or' *}

lemma or_absorb [simp]: "a: bool ==> a or a = a"
by (elim boolE, auto)

lemma or_commute: "[| a: bool; b:bool |] ==> a or b = b or a"
by (elim boolE, auto)

lemma or_assoc: "a: bool ==> (a or b) or c  =  a or (b or c)"
by (elim boolE, auto)

lemma or_and_distrib: "[| a: bool; b: bool; c: bool |] ==>
           (a and b) or c  =  (a or c) and (b or c)"
by (elim boolE, auto)


definition
  bool_of_o :: "o=>i" where
   "bool_of_o(P) == (if P then 1 else 0)"

lemma [simp]: "bool_of_o(True) = 1"
by (simp add: bool_of_o_def)

lemma [simp]: "bool_of_o(False) = 0"
by (simp add: bool_of_o_def)

lemma [simp,TC]: "bool_of_o(P) \<in> bool"
by (simp add: bool_of_o_def)

lemma [simp]: "(bool_of_o(P) = 1) <-> P"
by (simp add: bool_of_o_def)

lemma [simp]: "(bool_of_o(P) = 0) <-> ~P"
by (simp add: bool_of_o_def)

ML
{*
val bool_def = @{thm bool_def};
val bool_defs = @{thms bool_defs};
val singleton_0 = @{thm singleton_0};
val bool_1I = @{thm bool_1I};
val bool_0I = @{thm bool_0I};
val one_not_0 = @{thm one_not_0};
val one_neq_0 = @{thm one_neq_0};
val boolE = @{thm boolE};
val cond_1 = @{thm cond_1};
val cond_0 = @{thm cond_0};
val cond_type = @{thm cond_type};
val cond_simple_type = @{thm cond_simple_type};
val def_cond_1 = @{thm def_cond_1};
val def_cond_0 = @{thm def_cond_0};
val not_1 = @{thm not_1};
val not_0 = @{thm not_0};
val and_1 = @{thm and_1};
val and_0 = @{thm and_0};
val or_1 = @{thm or_1};
val or_0 = @{thm or_0};
val xor_1 = @{thm xor_1};
val xor_0 = @{thm xor_0};
val not_type = @{thm not_type};
val and_type = @{thm and_type};
val or_type = @{thm or_type};
val xor_type = @{thm xor_type};
val bool_typechecks = @{thms bool_typechecks};
val not_not = @{thm not_not};
val not_and = @{thm not_and};
val not_or = @{thm not_or};
val and_absorb = @{thm and_absorb};
val and_commute = @{thm and_commute};
val and_assoc = @{thm and_assoc};
val and_or_distrib = @{thm and_or_distrib};
val or_absorb = @{thm or_absorb};
val or_commute = @{thm or_commute};
val or_assoc = @{thm or_assoc};
val or_and_distrib = @{thm or_and_distrib};
*}

end