(* Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel *)header {* Set theory for higher-order logic *}theory Setimports Latticesbeginsubsection {* Sets as predicates *}types 'a set = "'a \<Rightarrow> bool"definition Collect :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set" where -- "comprehension" "Collect P = P"definition member :: "'a \<Rightarrow> 'a set \<Rightarrow> bool" where -- "membership" mem_def: "member x A = A x"notation member ("op :") and member ("(_/ : _)" [50, 51] 50)abbreviation not_member where "not_member x A \<equiv> ~ (x : A)" -- "non-membership"notation not_member ("op ~:") and not_member ("(_/ ~: _)" [50, 51] 50)notation (xsymbols) member ("op \<in>") and member ("(_/ \<in> _)" [50, 51] 50) and not_member ("op \<notin>") and not_member ("(_/ \<notin> _)" [50, 51] 50)notation (HTML output) member ("op \<in>") and member ("(_/ \<in> _)" [50, 51] 50) and not_member ("op \<notin>") and not_member ("(_/ \<notin> _)" [50, 51] 50)text {* Set comprehensions *}syntax "_Coll" :: "pttrn => bool => 'a set" ("(1{_./ _})")translations "{x. P}" == "CONST Collect (%x. P)"syntax "_Collect" :: "idt => 'a set => bool => 'a set" ("(1{_ :/ _./ _})")syntax (xsymbols) "_Collect" :: "idt => 'a set => bool => 'a set" ("(1{_ \<in>/ _./ _})")translations "{x:A. P}" => "{x. x:A & P}"lemma mem_Collect_eq [iff]: "(a : {x. P(x)}) = P(a)" by (simp add: Collect_def mem_def)lemma Collect_mem_eq [simp]: "{x. x:A} = A" by (simp add: Collect_def mem_def)lemma CollectI: "P(a) ==> a : {x. P(x)}" by simplemma CollectD: "a : {x. P(x)} ==> P(a)" by simplemma Collect_cong: "(!!x. P x = Q x) ==> {x. P(x)} = {x. Q(x)}" by simptext {*Simproc for pulling @{text "x=t"} in @{text "{x. \<dots> & x=t & \<dots>}"}to the front (and similarly for @{text "t=x"}):*}setup {*let val Coll_perm_tac = rtac @{thm Collect_cong} 1 THEN rtac @{thm iffI} 1 THEN ALLGOALS(EVERY'[REPEAT_DETERM o (etac @{thm conjE}), DEPTH_SOLVE_1 o (ares_tac [@{thm conjI}])]) val defColl_regroup = Simplifier.simproc_global @{theory} "defined Collect" ["{x. P x & Q x}"] (Quantifier1.rearrange_Coll Coll_perm_tac)in Simplifier.map_simpset (fn ss => ss addsimprocs [defColl_regroup])end*}lemmas CollectE = CollectD [elim_format]text {* Set enumerations *}abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot"definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}"syntax "_Finset" :: "args => 'a set" ("{(_)}")translations "{x, xs}" == "CONST insert x {xs}" "{x}" == "CONST insert x {}"subsection {* Subsets and bounded quantifiers *}abbreviation subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset \<equiv> less"abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"notation (output) subset ("op <") and subset ("(_/ < _)" [50, 51] 50) and subset_eq ("op <=") and subset_eq ("(_/ <= _)" [50, 51] 50)notation (xsymbols) subset ("op \<subset>") and subset ("(_/ \<subset> _)" [50, 51] 50) and subset_eq ("op \<subseteq>") and subset_eq ("(_/ \<subseteq> _)" [50, 51] 50)notation (HTML output) subset ("op \<subset>") and subset ("(_/ \<subset> _)" [50, 51] 50) and subset_eq ("op \<subseteq>") and subset_eq ("(_/ \<subseteq> _)" [50, 51] 50)abbreviation (input) supset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "supset \<equiv> greater"abbreviation (input) supset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "supset_eq \<equiv> greater_eq"notation (xsymbols) supset ("op \<supset>") and supset ("(_/ \<supset> _)" [50, 51] 50) and supset_eq ("op \<supseteq>") and supset_eq ("(_/ \<supseteq> _)" [50, 51] 50)definition Ball :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where "Ball A P \<longleftrightarrow> (\<forall>x. x \<in> A \<longrightarrow> P x)" -- "bounded universal quantifiers"definition Bex :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where "Bex A P \<longleftrightarrow> (\<exists>x. x \<in> A \<and> P x)" -- "bounded existential quantifiers"syntax "_Ball" :: "pttrn => 'a set => bool => bool" ("(3ALL _:_./ _)" [0, 0, 10] 10) "_Bex" :: "pttrn => 'a set => bool => bool" ("(3EX _:_./ _)" [0, 0, 10] 10) "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3EX! _:_./ _)" [0, 0, 10] 10) "_Bleast" :: "id => 'a set => bool => 'a" ("(3LEAST _:_./ _)" [0, 0, 10] 10)syntax (HOL) "_Ball" :: "pttrn => 'a set => bool => bool" ("(3! _:_./ _)" [0, 0, 10] 10) "_Bex" :: "pttrn => 'a set => bool => bool" ("(3? _:_./ _)" [0, 0, 10] 10) "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3?! _:_./ _)" [0, 0, 10] 10)syntax (xsymbols) "_Ball" :: "pttrn => 'a set => bool => bool" ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10) "_Bex" :: "pttrn => 'a set => bool => bool" ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10) "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10) "_Bleast" :: "id => 'a set => bool => 'a" ("(3LEAST_\<in>_./ _)" [0, 0, 10] 10)syntax (HTML output) "_Ball" :: "pttrn => 'a set => bool => bool" ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10) "_Bex" :: "pttrn => 'a set => bool => bool" ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10) "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)translations "ALL x:A. P" == "CONST Ball A (%x. P)" "EX x:A. P" == "CONST Bex A (%x. P)" "EX! x:A. P" => "EX! x. x:A & P" "LEAST x:A. P" => "LEAST x. x:A & P"syntax (output) "_setlessAll" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10) "_setlessEx" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10) "_setleAll" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10) "_setleEx" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10) "_setleEx1" :: "[idt, 'a, bool] => bool" ("(3EX! _<=_./ _)" [0, 0, 10] 10)syntax (xsymbols) "_setlessAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subset>_./ _)" [0, 0, 10] 10) "_setlessEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subset>_./ _)" [0, 0, 10] 10) "_setleAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10) "_setleEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10) "_setleEx1" :: "[idt, 'a, bool] => bool" ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)syntax (HOL output) "_setlessAll" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10) "_setlessEx" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10) "_setleAll" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10) "_setleEx" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10) "_setleEx1" :: "[idt, 'a, bool] => bool" ("(3?! _<=_./ _)" [0, 0, 10] 10)syntax (HTML output) "_setlessAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subset>_./ _)" [0, 0, 10] 10) "_setlessEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subset>_./ _)" [0, 0, 10] 10) "_setleAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10) "_setleEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10) "_setleEx1" :: "[idt, 'a, bool] => bool" ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)translations "\<forall>A\<subset>B. P" => "ALL A. A \<subset> B --> P" "\<exists>A\<subset>B. P" => "EX A. A \<subset> B & P" "\<forall>A\<subseteq>B. P" => "ALL A. A \<subseteq> B --> P" "\<exists>A\<subseteq>B. P" => "EX A. A \<subseteq> B & P" "\<exists>!A\<subseteq>B. P" => "EX! A. A \<subseteq> B & P"print_translation {*let val Type (set_type, _) = @{typ "'a set"}; (* FIXME 'a => bool (!?!) *) val All_binder = Syntax.binder_name @{const_syntax All}; val Ex_binder = Syntax.binder_name @{const_syntax Ex}; val impl = @{const_syntax HOL.implies}; val conj = @{const_syntax HOL.conj}; val sbset = @{const_syntax subset}; val sbset_eq = @{const_syntax subset_eq}; val trans = [((All_binder, impl, sbset), @{syntax_const "_setlessAll"}), ((All_binder, impl, sbset_eq), @{syntax_const "_setleAll"}), ((Ex_binder, conj, sbset), @{syntax_const "_setlessEx"}), ((Ex_binder, conj, sbset_eq), @{syntax_const "_setleEx"})]; fun mk v v' c n P = if v = v' andalso not (Term.exists_subterm (fn Free (x, _) => x = v | _ => false) n) then Syntax.const c $ Syntax.mark_bound v' $ n $ P else raise Match; fun tr' q = (q, fn [Const (@{syntax_const "_bound"}, _) $ Free (v, Type (T, _)), Const (c, _) $ (Const (d, _) $ (Const (@{syntax_const "_bound"}, _) $ Free (v', _)) $ n) $ P] => if T = set_type then (case AList.lookup (op =) trans (q, c, d) of NONE => raise Match | SOME l => mk v v' l n P) else raise Match | _ => raise Match);in [tr' All_binder, tr' Ex_binder]end*}text {* \medskip Translate between @{text "{e | x1...xn. P}"} and @{text "{u. EX x1..xn. u = e & P}"}; @{text "{y. EX x1..xn. y = e & P}"} is only translated if @{text "[0..n] subset bvs(e)"}.*}syntax "_Setcompr" :: "'a => idts => bool => 'a set" ("(1{_ |/_./ _})")parse_translation {* let val ex_tr = snd (mk_binder_tr ("EX ", @{const_syntax Ex})); fun nvars (Const (@{syntax_const "_idts"}, _) $ _ $ idts) = nvars idts + 1 | nvars _ = 1; fun setcompr_tr [e, idts, b] = let val eq = Syntax.const @{const_syntax HOL.eq} $ Bound (nvars idts) $ e; val P = Syntax.const @{const_syntax HOL.conj} $ eq $ b; val exP = ex_tr [idts, P]; in Syntax.const @{const_syntax Collect} $ Term.absdummy (dummyT, exP) end; in [(@{syntax_const "_Setcompr"}, setcompr_tr)] end;*}print_translation {* [Syntax.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"}, Syntax.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"}]*} -- {* to avoid eta-contraction of body *}print_translation {*let val ex_tr' = snd (mk_binder_tr' (@{const_syntax Ex}, "DUMMY")); fun setcompr_tr' [Abs (abs as (_, _, P))] = let fun check (Const (@{const_syntax Ex}, _) $ Abs (_, _, P), n) = check (P, n + 1) | check (Const (@{const_syntax HOL.conj}, _) $ (Const (@{const_syntax HOL.eq}, _) $ Bound m $ e) $ P, n) = n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso subset (op =) (0 upto (n - 1), add_loose_bnos (e, 0, [])) | check _ = false; fun tr' (_ $ abs) = let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' [abs] in Syntax.const @{syntax_const "_Setcompr"} $ e $ idts $ Q end; in if check (P, 0) then tr' P else let val (x as _ $ Free(xN, _), t) = atomic_abs_tr' abs; val M = Syntax.const @{syntax_const "_Coll"} $ x $ t; in case t of Const (@{const_syntax HOL.conj}, _) $ (Const (@{const_syntax Set.member}, _) $ (Const (@{syntax_const "_bound"}, _) $ Free (yN, _)) $ A) $ P => if xN = yN then Syntax.const @{syntax_const "_Collect"} $ x $ A $ P else M | _ => M end end; in [(@{const_syntax Collect}, setcompr_tr')] end;*}setup {*let val unfold_bex_tac = unfold_tac @{thms "Bex_def"}; fun prove_bex_tac ss = unfold_bex_tac ss THEN Quantifier1.prove_one_point_ex_tac; val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac; val unfold_ball_tac = unfold_tac @{thms "Ball_def"}; fun prove_ball_tac ss = unfold_ball_tac ss THEN Quantifier1.prove_one_point_all_tac; val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac; val defBEX_regroup = Simplifier.simproc_global @{theory} "defined BEX" ["EX x:A. P x & Q x"] rearrange_bex; val defBALL_regroup = Simplifier.simproc_global @{theory} "defined BALL" ["ALL x:A. P x --> Q x"] rearrange_ball;in Simplifier.map_simpset (fn ss => ss addsimprocs [defBALL_regroup, defBEX_regroup])end*}lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x" by (simp add: Ball_def)lemmas strip = impI allI ballIlemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x" by (simp add: Ball_def)text {* Gives better instantiation for bound:*}declaration {* fn _ => Classical.map_cs (fn cs => cs addbefore ("bspec", datac @{thm bspec} 1))*}ML {*structure Simpdata =structopen Simpdata;val mksimps_pairs = [(@{const_name Ball}, @{thms bspec})] @ mksimps_pairs;end;open Simpdata;*}declaration {* fn _ => Simplifier.map_ss (fn ss => ss setmksimps (mksimps mksimps_pairs))*}lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q" by (unfold Ball_def) blastlemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x" -- {* Normally the best argument order: @{prop "P x"} constrains the choice of @{prop "x:A"}. *} by (unfold Bex_def) blastlemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x" -- {* The best argument order when there is only one @{prop "x:A"}. *} by (unfold Bex_def) blastlemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x" by (unfold Bex_def) blastlemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q" by (unfold Bex_def) blastlemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)" -- {* Trival rewrite rule. *} by (simp add: Ball_def)lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)" -- {* Dual form for existentials. *} by (simp add: Bex_def)lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)" by blastlemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)" by blastlemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)" by blastlemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)" by blastlemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)" by blastlemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)" by blasttext {* Congruence rules *}lemma ball_cong: "A = B ==> (!!x. x:B ==> P x = Q x) ==> (ALL x:A. P x) = (ALL x:B. Q x)" by (simp add: Ball_def)lemma strong_ball_cong [cong]: "A = B ==> (!!x. x:B =simp=> P x = Q x) ==> (ALL x:A. P x) = (ALL x:B. Q x)" by (simp add: simp_implies_def Ball_def)lemma bex_cong: "A = B ==> (!!x. x:B ==> P x = Q x) ==> (EX x:A. P x) = (EX x:B. Q x)" by (simp add: Bex_def cong: conj_cong)lemma strong_bex_cong [cong]: "A = B ==> (!!x. x:B =simp=> P x = Q x) ==> (EX x:A. P x) = (EX x:B. Q x)" by (simp add: simp_implies_def Bex_def cong: conj_cong)subsection {* Basic operations *}subsubsection {* Subsets *}lemma subsetI [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> x \<in> B) \<Longrightarrow> A \<subseteq> B" unfolding mem_def by (rule le_funI, rule le_boolI)text {* \medskip Map the type @{text "'a set => anything"} to just @{typ 'a}; for overloading constants whose first argument has type @{typ "'a set"}.*}lemma subsetD [elim, intro?]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B" unfolding mem_def by (erule le_funE, erule le_boolE) -- {* Rule in Modus Ponens style. *}lemma rev_subsetD [no_atp,intro?]: "c \<in> A ==> A \<subseteq> B ==> c \<in> B" -- {* The same, with reversed premises for use with @{text erule} -- cf @{text rev_mp}. *} by (rule subsetD)text {* \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.*}lemma subsetCE [no_atp,elim]: "A \<subseteq> B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P" -- {* Classical elimination rule. *} unfolding mem_def by (blast dest: le_funE le_boolE)lemma subset_eq [no_atp]: "A \<le> B = (\<forall>x\<in>A. x \<in> B)" by blastlemma contra_subsetD [no_atp]: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A" by blastlemma subset_refl [simp]: "A \<subseteq> A" by (fact order_refl)lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C" by (fact order_trans)lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B" by (rule subsetD)lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B" by (rule subsetD)lemma eq_mem_trans: "a=b ==> b \<in> A ==> a \<in> A" by simplemmas basic_trans_rules [trans] = order_trans_rules set_rev_mp set_mp eq_mem_transsubsubsection {* Equality *}lemma set_eqI: assumes prem: "(!!x. (x:A) = (x:B))" shows "A = B" apply (rule prem [THEN ext, THEN arg_cong, THEN box_equals]) apply (rule Collect_mem_eq) apply (rule Collect_mem_eq) donelemma set_eq_iff [no_atp]: "(A = B) = (ALL x. (x:A) = (x:B))"by(auto intro:set_eqI)lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B" -- {* Anti-symmetry of the subset relation. *} by (iprover intro: set_eqI subsetD)text {* \medskip Equality rules from ZF set theory -- are they appropriate here?*}lemma equalityD1: "A = B ==> A \<subseteq> B" by simplemma equalityD2: "A = B ==> B \<subseteq> A" by simptext {* \medskip Be careful when adding this to the claset as @{text subset_empty} is in the simpset: @{prop "A = {}"} goes to @{prop "{} \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}!*}lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P" by simplemma equalityCE [elim]: "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P" by blastlemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)" by simplemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)" by simpsubsubsection {* The empty set *}lemma empty_def: "{} = {x. False}" by (simp add: bot_fun_def bot_bool_def Collect_def)lemma empty_iff [simp]: "(c : {}) = False" by (simp add: empty_def)lemma emptyE [elim!]: "a : {} ==> P" by simplemma empty_subsetI [iff]: "{} \<subseteq> A" -- {* One effect is to delete the ASSUMPTION @{prop "{} <= A"} *} by blastlemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}" by blastlemma equals0D: "A = {} ==> a \<notin> A" -- {* Use for reasoning about disjointness: @{text "A Int B = {}"} *} by blastlemma ball_empty [simp]: "Ball {} P = True" by (simp add: Ball_def)lemma bex_empty [simp]: "Bex {} P = False" by (simp add: Bex_def)subsubsection {* The universal set -- UNIV *}abbreviation UNIV :: "'a set" where "UNIV \<equiv> top"lemma UNIV_def: "UNIV = {x. True}" by (simp add: top_fun_def top_bool_def Collect_def)lemma UNIV_I [simp]: "x : UNIV" by (simp add: UNIV_def)declare UNIV_I [intro] -- {* unsafe makes it less likely to cause problems *}lemma UNIV_witness [intro?]: "EX x. x : UNIV" by simplemma subset_UNIV [simp]: "A \<subseteq> UNIV" by (rule subsetI) (rule UNIV_I)text {* \medskip Eta-contracting these two rules (to remove @{text P}) causes them to be ignored because of their interaction with congruence rules.*}lemma ball_UNIV [simp]: "Ball UNIV P = All P" by (simp add: Ball_def)lemma bex_UNIV [simp]: "Bex UNIV P = Ex P" by (simp add: Bex_def)lemma UNIV_eq_I: "(\<And>x. x \<in> A) \<Longrightarrow> UNIV = A" by autolemma UNIV_not_empty [iff]: "UNIV ~= {}" by (blast elim: equalityE)subsubsection {* The Powerset operator -- Pow *}definition Pow :: "'a set => 'a set set" where Pow_def: "Pow A = {B. B \<le> A}"lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)" by (simp add: Pow_def)lemma PowI: "A \<subseteq> B ==> A \<in> Pow B" by (simp add: Pow_def)lemma PowD: "A \<in> Pow B ==> A \<subseteq> B" by (simp add: Pow_def)lemma Pow_bottom: "{} \<in> Pow B" by simplemma Pow_top: "A \<in> Pow A" by simplemma Pow_not_empty: "Pow A \<noteq> {}" using Pow_top by blastsubsubsection {* Set complement *}lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)" by (simp add: mem_def fun_Compl_def bool_Compl_def)lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A" by (unfold mem_def fun_Compl_def bool_Compl_def) blasttext {* \medskip This form, with negated conclusion, works well with the Classical prover. Negated assumptions behave like formulae on the right side of the notional turnstile ... *}lemma ComplD [dest!]: "c : -A ==> c~:A" by (simp add: mem_def fun_Compl_def bool_Compl_def)lemmas ComplE = ComplD [elim_format]lemma Compl_eq: "- A = {x. ~ x : A}" by blastsubsubsection {* Binary intersection *}abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Int" 70) where "op Int \<equiv> inf"notation (xsymbols) inter (infixl "\<inter>" 70)notation (HTML output) inter (infixl "\<inter>" 70)lemma Int_def: "A \<inter> B = {x. x \<in> A \<and> x \<in> B}" by (simp add: inf_fun_def inf_bool_def Collect_def mem_def)lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)" by (unfold Int_def) blastlemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B" by simplemma IntD1: "c : A Int B ==> c:A" by simplemma IntD2: "c : A Int B ==> c:B" by simplemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P" by simplemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B" by (fact mono_inf)subsubsection {* Binary union *}abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Un" 65) where "union \<equiv> sup"notation (xsymbols) union (infixl "\<union>" 65)notation (HTML output) union (infixl "\<union>" 65)lemma Un_def: "A \<union> B = {x. x \<in> A \<or> x \<in> B}" by (simp add: sup_fun_def sup_bool_def Collect_def mem_def)lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)" by (unfold Un_def) blastlemma UnI1 [elim?]: "c:A ==> c : A Un B" by simplemma UnI2 [elim?]: "c:B ==> c : A Un B" by simptext {* \medskip Classical introduction rule: no commitment to @{prop A} vs @{prop B}.*}lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B" by autolemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P" by (unfold Un_def) blastlemma insert_def: "insert a B = {x. x = a} \<union> B" by (simp add: Collect_def mem_def insert_compr Un_def)lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)" by (fact mono_sup)subsubsection {* Set difference *}lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)" by (simp add: mem_def fun_diff_def bool_diff_def)lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B" by simplemma DiffD1: "c : A - B ==> c : A" by simplemma DiffD2: "c : A - B ==> c : B ==> P" by simplemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P" by simplemma set_diff_eq: "A - B = {x. x : A & ~ x : B}" by blastlemma Compl_eq_Diff_UNIV: "-A = (UNIV - A)"by blastsubsubsection {* Augmenting a set -- @{const insert} *}lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)" by (unfold insert_def) blastlemma insertI1: "a : insert a B" by simplemma insertI2: "a : B ==> a : insert b B" by simplemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P" by (unfold insert_def) blastlemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B" -- {* Classical introduction rule. *} by autolemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)" by autolemma set_insert: assumes "x \<in> A" obtains B where "A = insert x B" and "x \<notin> B"proof from assms show "A = insert x (A - {x})" by blastnext show "x \<notin> A - {x}" by blastqedlemma insert_ident: "x ~: A ==> x ~: B ==> (insert x A = insert x B) = (A = B)"by autosubsubsection {* Singletons, using insert *}lemma singletonI [intro!,no_atp]: "a : {a}" -- {* Redundant? But unlike @{text insertCI}, it proves the subgoal immediately! *} by (rule insertI1)lemma singletonD [dest!,no_atp]: "b : {a} ==> b = a" by blastlemmas singletonE = singletonD [elim_format]lemma singleton_iff: "(b : {a}) = (b = a)" by blastlemma singleton_inject [dest!]: "{a} = {b} ==> a = b" by blastlemma singleton_insert_inj_eq [iff,no_atp]: "({b} = insert a A) = (a = b & A \<subseteq> {b})" by blastlemma singleton_insert_inj_eq' [iff,no_atp]: "(insert a A = {b}) = (a = b & A \<subseteq> {b})" by blastlemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}" by fastlemma singleton_conv [simp]: "{x. x = a} = {a}" by blastlemma singleton_conv2 [simp]: "{x. a = x} = {a}" by blastlemma diff_single_insert: "A - {x} \<subseteq> B ==> x \<in> A ==> A \<subseteq> insert x B" by blastlemma doubleton_eq_iff: "({a,b} = {c,d}) = (a=c & b=d | a=d & b=c)" by (blast elim: equalityE)subsubsection {* Image of a set under a function *}text {* Frequently @{term b} does not have the syntactic form of @{term "f x"}.*}definition image :: "('a => 'b) => 'a set => 'b set" (infixr "`" 90) where image_def [no_atp]: "f ` A = {y. EX x:A. y = f(x)}"abbreviation range :: "('a => 'b) => 'b set" where -- "of function" "range f == f ` UNIV"lemma image_eqI [simp, intro]: "b = f x ==> x:A ==> b : f`A" by (unfold image_def) blastlemma imageI: "x : A ==> f x : f ` A" by (rule image_eqI) (rule refl)lemma rev_image_eqI: "x:A ==> b = f x ==> b : f`A" -- {* This version's more effective when we already have the required @{term x}. *} by (unfold image_def) blastlemma imageE [elim!]: "b : (%x. f x)`A ==> (!!x. b = f x ==> x:A ==> P) ==> P" -- {* The eta-expansion gives variable-name preservation. *} by (unfold image_def) blastlemma image_Un: "f`(A Un B) = f`A Un f`B" by blastlemma image_iff: "(z : f`A) = (EX x:A. z = f x)" by blastlemma image_subset_iff [no_atp]: "(f`A \<subseteq> B) = (\<forall>x\<in>A. f x \<in> B)" -- {* This rewrite rule would confuse users if made default. *} by blastlemma subset_image_iff: "(B \<subseteq> f`A) = (EX AA. AA \<subseteq> A & B = f`AA)" apply safe prefer 2 apply fast apply (rule_tac x = "{a. a : A & f a : B}" in exI, fast) donelemma image_subsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f`A \<subseteq> B" -- {* Replaces the three steps @{text subsetI}, @{text imageE}, @{text hypsubst}, but breaks too many existing proofs. *} by blasttext {* \medskip Range of a function -- just a translation for image!*}lemma range_eqI: "b = f x ==> b \<in> range f" by simplemma rangeI: "f x \<in> range f" by simplemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) ==> (!!x. b = f x ==> P) ==> P" by blastsubsubsection {* Some rules with @{text "if"} *}text{* Elimination of @{text"{x. \<dots> & x=t & \<dots>}"}. *}lemma Collect_conv_if: "{x. x=a & P x} = (if P a then {a} else {})" by autolemma Collect_conv_if2: "{x. a=x & P x} = (if P a then {a} else {})" by autotext {* Rewrite rules for boolean case-splitting: faster than @{text "split_if [split]"}.*}lemma split_if_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))" by (rule split_if)lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))" by (rule split_if)text {* Split ifs on either side of the membership relation. Not for @{text "[simp]"} -- can cause goals to blow up!*}lemma split_if_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))" by (rule split_if)lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))" by (rule split_if [where P="%S. a : S"])lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2(*Would like to add these, but the existing code only searches for the outer-level constant, which in this case is just Set.member; we instead need to use term-nets to associate patterns with rules. Also, if a rule fails to apply, then the formula should be kept. [("uminus", Compl_iff RS iffD1), ("minus", [Diff_iff RS iffD1]), ("Int", [IntD1,IntD2]), ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])] *)subsection {* Further operations and lemmas *}subsubsection {* The ``proper subset'' relation *}lemma psubsetI [intro!,no_atp]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B" by (unfold less_le) blastlemma psubsetE [elim!,no_atp]: "[|A \<subset> B; [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R" by (unfold less_le) blastlemma psubset_insert_iff: "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)" by (auto simp add: less_le subset_insert_iff)lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)" by (simp only: less_le)lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B" by (simp add: psubset_eq)lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C"apply (unfold less_le)apply (auto dest: subset_antisym)donelemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B"apply (unfold less_le)apply (auto dest: subsetD)donelemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C" by (auto simp add: psubset_eq)lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C" by (auto simp add: psubset_eq)lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)" by (unfold less_le) blastlemma atomize_ball: "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)" by (simp only: Ball_def atomize_all atomize_imp)lemmas [symmetric, rulify] = atomize_ball and [symmetric, defn] = atomize_balllemma image_Pow_mono: assumes "f ` A \<le> B" shows "(image f) ` (Pow A) \<le> Pow B"using assms by blastlemma image_Pow_surj: assumes "f ` A = B" shows "(image f) ` (Pow A) = Pow B"using assms unfolding Pow_def proof(auto) fix Y assume *: "Y \<le> f ` A" obtain X where X_def: "X = {x \<in> A. f x \<in> Y}" by blast have "f ` X = Y \<and> X \<le> A" unfolding X_def using * by auto thus "Y \<in> (image f) ` {X. X \<le> A}" by blastqedsubsubsection {* Derived rules involving subsets. *}text {* @{text insert}. *}lemma subset_insertI: "B \<subseteq> insert a B" by (rule subsetI) (erule insertI2)lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B" by blastlemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)" by blasttext {* \medskip Finite Union -- the least upper bound of two sets. *}lemma Un_upper1: "A \<subseteq> A \<union> B" by (fact sup_ge1)lemma Un_upper2: "B \<subseteq> A \<union> B" by (fact sup_ge2)lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C" by (fact sup_least)text {* \medskip Finite Intersection -- the greatest lower bound of two sets. *}lemma Int_lower1: "A \<inter> B \<subseteq> A" by (fact inf_le1)lemma Int_lower2: "A \<inter> B \<subseteq> B" by (fact inf_le2)lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B" by (fact inf_greatest)text {* \medskip Set difference. *}lemma Diff_subset: "A - B \<subseteq> A" by blastlemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)"by blastsubsubsection {* Equalities involving union, intersection, inclusion, etc. *}text {* @{text "{}"}. *}lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})" -- {* supersedes @{text "Collect_False_empty"} *} by autolemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})" by blastlemma not_psubset_empty [iff]: "\<not> (A < {})" by (unfold less_le) blastlemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"by blastlemma empty_Collect_eq [simp]: "({} = Collect P) = (\<forall>x. \<not> P x)"by blastlemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}" by blastlemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}" by blastlemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} \<union> {x. Q x}" by blastlemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}" by blasttext {* \medskip @{text insert}. *}lemma insert_is_Un: "insert a A = {a} Un A" -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a {}"} *} by blastlemma insert_not_empty [simp]: "insert a A \<noteq> {}" by blastlemmas empty_not_insert = insert_not_empty [symmetric, standard]declare empty_not_insert [simp]lemma insert_absorb: "a \<in> A ==> insert a A = A" -- {* @{text "[simp]"} causes recursive calls when there are nested inserts *} -- {* with \emph{quadratic} running time *} by blastlemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A" by blastlemma insert_commute: "insert x (insert y A) = insert y (insert x A)" by blastlemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)" by blastlemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B" -- {* use new @{text B} rather than @{text "A - {a}"} to avoid infinite unfolding *} apply (rule_tac x = "A - {a}" in exI, blast) donelemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}" by autolemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)" by blastlemma insert_disjoint [simp,no_atp]: "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})" "({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)" by autolemma disjoint_insert [simp,no_atp]: "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})" "({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)" by autotext {* \medskip @{text image}. *}lemma image_empty [simp]: "f`{} = {}" by blastlemma image_insert [simp]: "f ` insert a B = insert (f a) (f`B)" by blastlemma image_constant: "x \<in> A ==> (\<lambda>x. c) ` A = {c}" by autolemma image_constant_conv: "(%x. c) ` A = (if A = {} then {} else {c})"by autolemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A"by blastlemma insert_image [simp]: "x \<in> A ==> insert (f x) (f`A) = f`A"by blastlemma image_is_empty [iff]: "(f`A = {}) = (A = {})"by blastlemma empty_is_image[iff]: "({} = f ` A) = (A = {})"by blastlemma image_Collect [no_atp]: "f ` {x. P x} = {f x | x. P x}" -- {* NOT suitable as a default simprule: the RHS isn't simpler than the LHS, with its implicit quantifier and conjunction. Also image enjoys better equational properties than does the RHS. *} by blastlemma if_image_distrib [simp]: "(\<lambda>x. if P x then f x else g x) ` S = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))" by (auto simp add: image_def)lemma image_cong: "M = N ==> (!!x. x \<in> N ==> f x = g x) ==> f`M = g`N" by (simp add: image_def)text {* \medskip @{text range}. *}lemma full_SetCompr_eq [no_atp]: "{u. \<exists>x. u = f x} = range f" by autolemma range_composition: "range (\<lambda>x. f (g x)) = f`range g"by (subst image_image, simp)text {* \medskip @{text Int} *}lemma Int_absorb [simp]: "A \<inter> A = A" by (fact inf_idem)lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B" by (fact inf_left_idem)lemma Int_commute: "A \<inter> B = B \<inter> A" by (fact inf_commute)lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)" by (fact inf_left_commute)lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)" by (fact inf_assoc)lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute -- {* Intersection is an AC-operator *}lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B" by (fact inf_absorb2)lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A" by (fact inf_absorb1)lemma Int_empty_left [simp]: "{} \<inter> B = {}" by (fact inf_bot_left)lemma Int_empty_right [simp]: "A \<inter> {} = {}" by (fact inf_bot_right)lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)" by blastlemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)" by blastlemma Int_UNIV_left [simp]: "UNIV \<inter> B = B" by (fact inf_top_left)lemma Int_UNIV_right [simp]: "A \<inter> UNIV = A" by (fact inf_top_right)lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)" by (fact inf_sup_distrib1)lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)" by (fact inf_sup_distrib2)lemma Int_UNIV [simp,no_atp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)" by (fact inf_eq_top_iff)lemma Int_subset_iff [no_atp, simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)" by (fact le_inf_iff)lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)" by blasttext {* \medskip @{text Un}. *}lemma Un_absorb [simp]: "A \<union> A = A" by (fact sup_idem)lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B" by (fact sup_left_idem)lemma Un_commute: "A \<union> B = B \<union> A" by (fact sup_commute)lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)" by (fact sup_left_commute)lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)" by (fact sup_assoc)lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute -- {* Union is an AC-operator *}lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B" by (fact sup_absorb2)lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A" by (fact sup_absorb1)lemma Un_empty_left [simp]: "{} \<union> B = B" by (fact sup_bot_left)lemma Un_empty_right [simp]: "A \<union> {} = A" by (fact sup_bot_right)lemma Un_UNIV_left [simp]: "UNIV \<union> B = UNIV" by (fact sup_top_left)lemma Un_UNIV_right [simp]: "A \<union> UNIV = UNIV" by (fact sup_top_right)lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)" by blastlemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)" by blastlemma Int_insert_left: "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)" by autolemma Int_insert_left_if0[simp]: "a \<notin> C \<Longrightarrow> (insert a B) Int C = B \<inter> C" by autolemma Int_insert_left_if1[simp]: "a \<in> C \<Longrightarrow> (insert a B) Int C = insert a (B Int C)" by autolemma Int_insert_right: "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)" by autolemma Int_insert_right_if0[simp]: "a \<notin> A \<Longrightarrow> A Int (insert a B) = A Int B" by autolemma Int_insert_right_if1[simp]: "a \<in> A \<Longrightarrow> A Int (insert a B) = insert a (A Int B)" by autolemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)" by (fact sup_inf_distrib1)lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)" by (fact sup_inf_distrib2)lemma Un_Int_crazy: "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)" by blastlemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)" by (fact le_iff_sup)lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})" by (fact sup_eq_bot_iff)lemma Un_subset_iff [no_atp, simp]: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)" by (fact le_sup_iff)lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A" by blastlemma Diff_Int2: "A \<inter> C - B \<inter> C = A \<inter> C - B" by blasttext {* \medskip Set complement *}lemma Compl_disjoint [simp]: "A \<inter> -A = {}" by (fact inf_compl_bot)lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}" by (fact compl_inf_bot)lemma Compl_partition: "A \<union> -A = UNIV" by (fact sup_compl_top)lemma Compl_partition2: "-A \<union> A = UNIV" by (fact compl_sup_top)lemma double_complement [simp]: "- (-A) = (A::'a set)" by (fact double_compl)lemma Compl_Un [simp]: "-(A \<union> B) = (-A) \<inter> (-B)" by (fact compl_sup)lemma Compl_Int [simp]: "-(A \<inter> B) = (-A) \<union> (-B)" by (fact compl_inf)lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})" by blastlemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)" -- {* Halmos, Naive Set Theory, page 16. *} by blastlemma Compl_UNIV_eq [simp]: "-UNIV = {}" by (fact compl_top_eq)lemma Compl_empty_eq [simp]: "-{} = UNIV" by (fact compl_bot_eq)lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)" by (fact compl_le_compl_iff)lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))" by (fact compl_eq_compl_iff)text {* \medskip Bounded quantifiers. The following are not added to the default simpset because (a) they duplicate the body and (b) there are no similar rules for @{text Int}. *}lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))" by blastlemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))" by blasttext {* \medskip Set difference. *}lemma Diff_eq: "A - B = A \<inter> (-B)" by blastlemma Diff_eq_empty_iff [simp,no_atp]: "(A - B = {}) = (A \<subseteq> B)" by blastlemma Diff_cancel [simp]: "A - A = {}" by blastlemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)"by blastlemma Diff_triv: "A \<inter> B = {} ==> A - B = A" by (blast elim: equalityE)lemma empty_Diff [simp]: "{} - A = {}" by blastlemma Diff_empty [simp]: "A - {} = A" by blastlemma Diff_UNIV [simp]: "A - UNIV = {}" by blastlemma Diff_insert0 [simp,no_atp]: "x \<notin> A ==> A - insert x B = A - B" by blastlemma Diff_insert: "A - insert a B = A - B - {a}" -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *} by blastlemma Diff_insert2: "A - insert a B = A - {a} - B" -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *} by blastlemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))" by autolemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B" by blastlemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"by blastlemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A" by blastlemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A" by autolemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}" by blastlemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B" by blastlemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A" by blastlemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B" by blastlemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A" by blastlemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)" by blastlemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)" by blastlemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)" by blastlemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)" by blastlemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)" by blastlemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)" by blastlemma Diff_Compl [simp]: "A - (- B) = A \<inter> B" by autolemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B" by blasttext {* \medskip Quantification over type @{typ bool}. *}lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x" by (cases x) autolemma all_bool_eq: "(\<forall>b. P b) \<longleftrightarrow> P True \<and> P False" by (auto intro: bool_induct)lemma bool_contrapos: "P x \<Longrightarrow> \<not> P False \<Longrightarrow> P True" by (cases x) autolemma ex_bool_eq: "(\<exists>b. P b) \<longleftrightarrow> P True \<or> P False" by (auto intro: bool_contrapos)text {* \medskip @{text Pow} *}lemma Pow_empty [simp]: "Pow {} = {{}}" by (auto simp add: Pow_def)lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)" by (blast intro: image_eqI [where ?x = "u - {a}", standard])lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}" by (blast intro: exI [where ?x = "- u", standard])lemma Pow_UNIV [simp]: "Pow UNIV = UNIV" by blastlemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)" by blastlemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B" by blasttext {* \medskip Miscellany. *}lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)" by blastlemma subset_iff [no_atp]: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)" by blastlemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))" by (unfold less_le) blastlemma all_not_in_conv [simp]: "(\<forall>x. x \<notin> A) = (A = {})" by blastlemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})" by blastlemma distinct_lemma: "f x \<noteq> f y ==> x \<noteq> y" by iproversubsubsection {* Monotonicity of various operations *}lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B" by blastlemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B" by blastlemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D" by blastlemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D" by (fact sup_mono)lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D" by (fact inf_mono)lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D" by blastlemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A" by (fact compl_mono)text {* \medskip Monotonicity of implications. *}lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B" apply (rule impI) apply (erule subsetD, assumption) donelemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)" by iproverlemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)" by iproverlemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)" by iproverlemma imp_refl: "P --> P" ..lemma not_mono: "Q --> P ==> ~ P --> ~ Q" by iproverlemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)" by iproverlemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)" by iproverlemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q" by blastlemma Int_Collect_mono: "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q" by blastlemmas basic_monos = subset_refl imp_refl disj_mono conj_mono ex_mono Collect_mono in_monolemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c" by iproversubsubsection {* Inverse image of a function *}definition vimage :: "('a => 'b) => 'b set => 'a set" (infixr "-`" 90) where "f -` B == {x. f x : B}"lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)" by (unfold vimage_def) blastlemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)" by simplemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B" by (unfold vimage_def) blastlemma vimageI2: "f a : A ==> a : f -` A" by (unfold vimage_def) fastlemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P" by (unfold vimage_def) blastlemma vimageD: "a : f -` A ==> f a : A" by (unfold vimage_def) fastlemma vimage_empty [simp]: "f -` {} = {}" by blastlemma vimage_Compl: "f -` (-A) = -(f -` A)" by blastlemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)" by blastlemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)" by fastlemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}" by blastlemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q" by blastlemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)" -- {* NOT suitable for rewriting because of the recurrence of @{term "{a}"}. *} by blastlemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)" by blastlemma vimage_UNIV [simp]: "f -` UNIV = UNIV" by blastlemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B" -- {* monotonicity *} by blastlemma vimage_image_eq [no_atp]: "f -` (f ` A) = {y. EX x:A. f x = f y}"by (blast intro: sym)lemma image_vimage_subset: "f ` (f -` A) <= A"by blastlemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f"by blastlemma vimage_const [simp]: "((\<lambda>x. c) -` A) = (if c \<in> A then UNIV else {})" by autolemma vimage_if [simp]: "((\<lambda>x. if x \<in> B then c else d) -` A) = (if c \<in> A then (if d \<in> A then UNIV else B) else if d \<in> A then -B else {})" by (auto simp add: vimage_def) lemma vimage_inter_cong: "(\<And> w. w \<in> S \<Longrightarrow> f w = g w) \<Longrightarrow> f -` y \<inter> S = g -` y \<inter> S" by autolemma image_Int_subset: "f`(A Int B) <= f`A Int f`B"by blastlemma image_diff_subset: "f`A - f`B <= f`(A - B)"by blastsubsubsection {* Getting the Contents of a Singleton Set *}definition the_elem :: "'a set \<Rightarrow> 'a" where "the_elem X = (THE x. X = {x})"lemma the_elem_eq [simp]: "the_elem {x} = x" by (simp add: the_elem_def)subsubsection {* Least value operator *}lemma Least_mono: "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)" -- {* Courtesy of Stephan Merz *} apply clarify apply (erule_tac P = "%x. x : S" in LeastI2_order, fast) apply (rule LeastI2_order) apply (auto elim: monoD intro!: order_antisym) donesubsection {* Misc *}text {* Rudimentary code generation *}lemma insert_code [code]: "insert y A x \<longleftrightarrow> y = x \<or> A x" by (auto simp add: insert_compr Collect_def mem_def)lemma vimage_code [code]: "(f -` A) x = A (f x)" by (simp add: vimage_def Collect_def mem_def)hide_const (open) membertext {* Misc theorem and ML bindings *}lemmas equalityI = subset_antisymML {*val Ball_def = @{thm Ball_def}val Bex_def = @{thm Bex_def}val CollectD = @{thm CollectD}val CollectE = @{thm CollectE}val CollectI = @{thm CollectI}val Collect_conj_eq = @{thm Collect_conj_eq}val Collect_mem_eq = @{thm Collect_mem_eq}val IntD1 = @{thm IntD1}val IntD2 = @{thm IntD2}val IntE = @{thm IntE}val IntI = @{thm IntI}val Int_Collect = @{thm Int_Collect}val UNIV_I = @{thm UNIV_I}val UNIV_witness = @{thm UNIV_witness}val UnE = @{thm UnE}val UnI1 = @{thm UnI1}val UnI2 = @{thm UnI2}val ballE = @{thm ballE}val ballI = @{thm ballI}val bexCI = @{thm bexCI}val bexE = @{thm bexE}val bexI = @{thm bexI}val bex_triv = @{thm bex_triv}val bspec = @{thm bspec}val contra_subsetD = @{thm contra_subsetD}val distinct_lemma = @{thm distinct_lemma}val eq_to_mono = @{thm eq_to_mono}val equalityCE = @{thm equalityCE}val equalityD1 = @{thm equalityD1}val equalityD2 = @{thm equalityD2}val equalityE = @{thm equalityE}val equalityI = @{thm equalityI}val imageE = @{thm imageE}val imageI = @{thm imageI}val image_Un = @{thm image_Un}val image_insert = @{thm image_insert}val insert_commute = @{thm insert_commute}val insert_iff = @{thm insert_iff}val mem_Collect_eq = @{thm mem_Collect_eq}val rangeE = @{thm rangeE}val rangeI = @{thm rangeI}val range_eqI = @{thm range_eqI}val subsetCE = @{thm subsetCE}val subsetD = @{thm subsetD}val subsetI = @{thm subsetI}val subset_refl = @{thm subset_refl}val subset_trans = @{thm subset_trans}val vimageD = @{thm vimageD}val vimageE = @{thm vimageE}val vimageI = @{thm vimageI}val vimageI2 = @{thm vimageI2}val vimage_Collect = @{thm vimage_Collect}val vimage_Int = @{thm vimage_Int}val vimage_Un = @{thm vimage_Un}*}end