src/HOL/Integ/Equiv.thy
author wenzelm
Fri, 08 Mar 2002 16:24:06 +0100
changeset 13049 ce180e5b7fa0
parent 12398 9c27f28c8f5a
child 13482 2bb7200a99cf
permissions -rw-r--r--
tuned;

(*  Title:      Equiv.thy
    ID:         $Id$
    Authors:    Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1996  University of Cambridge

Equivalence relations in Higher-Order Set Theory 
*)

Equiv = Relation + Finite_Set +
constdefs
  equiv    :: "['a set, ('a*'a) set] => bool"
    "equiv A r == refl A r & sym(r) & trans(r)"

  quotient :: "['a set, ('a*'a) set] => 'a set set"  (infixl "'/'/" 90) 
    "A//r == UN x:A. {r``{x}}"      (*set of equiv classes*)

  congruent  :: "[('a*'a) set, 'a=>'b] => bool"
    "congruent r b  == ALL y z. (y,z):r --> b(y)=b(z)"

  congruent2 :: "[('a*'a) set, ['a,'a]=>'b] => bool"
    "congruent2 r b == ALL y1 z1 y2 z2.
                         (y1,z1):r --> (y2,z2):r --> b y1 y2 = b z1 z2"
end