(* Title: HOL/Real/HahnBanach/Subspace.thy
ID: $Id$
Author: Gertrud Bauer, TU Munich
*)
header {* Subspaces *}
theory Subspace = VectorSpace:
subsection {* Definition *}
text {*
A non-empty subset @{text U} of a vector space @{text V} is a
\emph{subspace} of @{text V}, iff @{text U} is closed under addition
and scalar multiplication.
*}
constdefs
is_subspace :: "'a::{plus, minus, zero} set \<Rightarrow> 'a set \<Rightarrow> bool"
"is_subspace U V \<equiv> U \<noteq> {} \<and> U \<subseteq> V
\<and> (\<forall>x \<in> U. \<forall>y \<in> U. \<forall>a. x + y \<in> U \<and> a \<cdot> x \<in> U)"
lemma subspaceI [intro]:
"0 \<in> U \<Longrightarrow> U \<subseteq> V \<Longrightarrow> \<forall>x \<in> U. \<forall>y \<in> U. (x + y \<in> U) \<Longrightarrow>
\<forall>x \<in> U. \<forall>a. a \<cdot> x \<in> U
\<Longrightarrow> is_subspace U V"
proof (unfold is_subspace_def, intro conjI)
assume "0 \<in> U" thus "U \<noteq> {}" by fast
qed (simp+)
lemma subspace_not_empty [intro?]: "is_subspace U V \<Longrightarrow> U \<noteq> {}"
by (unfold is_subspace_def) blast
lemma subspace_subset [intro?]: "is_subspace U V \<Longrightarrow> U \<subseteq> V"
by (unfold is_subspace_def) blast
lemma subspace_subsetD [simp, intro?]:
"is_subspace U V \<Longrightarrow> x \<in> U \<Longrightarrow> x \<in> V"
by (unfold is_subspace_def) blast
lemma subspace_add_closed [simp, intro?]:
"is_subspace U V \<Longrightarrow> x \<in> U \<Longrightarrow> y \<in> U \<Longrightarrow> x + y \<in> U"
by (unfold is_subspace_def) blast
lemma subspace_mult_closed [simp, intro?]:
"is_subspace U V \<Longrightarrow> x \<in> U \<Longrightarrow> a \<cdot> x \<in> U"
by (unfold is_subspace_def) blast
lemma subspace_diff_closed [simp, intro?]:
"is_subspace U V \<Longrightarrow> is_vectorspace V \<Longrightarrow> x \<in> U \<Longrightarrow> y \<in> U
\<Longrightarrow> x - y \<in> U"
by (simp add: diff_eq1 negate_eq1)
text {* Similar as for linear spaces, the existence of the
zero element in every subspace follows from the non-emptiness
of the carrier set and by vector space laws.*}
lemma zero_in_subspace [intro?]:
"is_subspace U V \<Longrightarrow> is_vectorspace V \<Longrightarrow> 0 \<in> U"
proof -
assume "is_subspace U V" and v: "is_vectorspace V"
have "U \<noteq> {}" ..
hence "\<exists>x. x \<in> U" by blast
thus ?thesis
proof
fix x assume u: "x \<in> U"
hence "x \<in> V" by (simp!)
with v have "0 = x - x" by (simp!)
also have "... \<in> U" by (rule subspace_diff_closed)
finally show ?thesis .
qed
qed
lemma subspace_neg_closed [simp, intro?]:
"is_subspace U V \<Longrightarrow> is_vectorspace V \<Longrightarrow> x \<in> U \<Longrightarrow> - x \<in> U"
by (simp add: negate_eq1)
text {* \medskip Further derived laws: every subspace is a vector space. *}
lemma subspace_vs [intro?]:
"is_subspace U V \<Longrightarrow> is_vectorspace V \<Longrightarrow> is_vectorspace U"
proof -
assume "is_subspace U V" "is_vectorspace V"
show ?thesis
proof
show "0 \<in> U" ..
show "\<forall>x \<in> U. \<forall>a. a \<cdot> x \<in> U" by (simp!)
show "\<forall>x \<in> U. \<forall>y \<in> U. x + y \<in> U" by (simp!)
show "\<forall>x \<in> U. - x = - 1 \<cdot> x" by (simp! add: negate_eq1)
show "\<forall>x \<in> U. \<forall>y \<in> U. x - y = x + - y"
by (simp! add: diff_eq1)
qed (simp! add: vs_add_mult_distrib1 vs_add_mult_distrib2)+
qed
text {* The subspace relation is reflexive. *}
lemma subspace_refl [intro]: "is_vectorspace V \<Longrightarrow> is_subspace V V"
proof
assume "is_vectorspace V"
show "0 \<in> V" ..
show "V \<subseteq> V" ..
show "\<forall>x \<in> V. \<forall>y \<in> V. x + y \<in> V" by (simp!)
show "\<forall>x \<in> V. \<forall>a. a \<cdot> x \<in> V" by (simp!)
qed
text {* The subspace relation is transitive. *}
lemma subspace_trans:
"is_subspace U V \<Longrightarrow> is_vectorspace V \<Longrightarrow> is_subspace V W
\<Longrightarrow> is_subspace U W"
proof
assume "is_subspace U V" "is_subspace V W" "is_vectorspace V"
show "0 \<in> U" ..
have "U \<subseteq> V" ..
also have "V \<subseteq> W" ..
finally show "U \<subseteq> W" .
show "\<forall>x \<in> U. \<forall>y \<in> U. x + y \<in> U"
proof (intro ballI)
fix x y assume "x \<in> U" "y \<in> U"
show "x + y \<in> U" by (simp!)
qed
show "\<forall>x \<in> U. \<forall>a. a \<cdot> x \<in> U"
proof (intro ballI allI)
fix x a assume "x \<in> U"
show "a \<cdot> x \<in> U" by (simp!)
qed
qed
subsection {* Linear closure *}
text {*
The \emph{linear closure} of a vector @{text x} is the set of all
scalar multiples of @{text x}.
*}
constdefs
lin :: "('a::{minus,plus,zero}) \<Rightarrow> 'a set"
"lin x \<equiv> {a \<cdot> x | a. True}"
lemma linD: "(x \<in> lin v) = (\<exists>a::real. x = a \<cdot> v)"
by (unfold lin_def) fast
lemma linI [intro?]: "a \<cdot> x0 \<in> lin x0"
by (unfold lin_def) fast
text {* Every vector is contained in its linear closure. *}
lemma x_lin_x: "is_vectorspace V \<Longrightarrow> x \<in> V \<Longrightarrow> x \<in> lin x"
proof (unfold lin_def, intro CollectI exI conjI)
assume "is_vectorspace V" "x \<in> V"
show "x = 1 \<cdot> x" by (simp!)
qed simp
text {* Any linear closure is a subspace. *}
lemma lin_subspace [intro?]:
"is_vectorspace V \<Longrightarrow> x \<in> V \<Longrightarrow> is_subspace (lin x) V"
proof
assume "is_vectorspace V" "x \<in> V"
show "0 \<in> lin x"
proof (unfold lin_def, intro CollectI exI conjI)
show "0 = (0::real) \<cdot> x" by (simp!)
qed simp
show "lin x \<subseteq> V"
proof (unfold lin_def, intro subsetI, elim CollectE exE conjE)
fix xa a assume "xa = a \<cdot> x"
show "xa \<in> V" by (simp!)
qed
show "\<forall>x1 \<in> lin x. \<forall>x2 \<in> lin x. x1 + x2 \<in> lin x"
proof (intro ballI)
fix x1 x2 assume "x1 \<in> lin x" "x2 \<in> lin x"
thus "x1 + x2 \<in> lin x"
proof (unfold lin_def, elim CollectE exE conjE,
intro CollectI exI conjI)
fix a1 a2 assume "x1 = a1 \<cdot> x" "x2 = a2 \<cdot> x"
show "x1 + x2 = (a1 + a2) \<cdot> x"
by (simp! add: vs_add_mult_distrib2)
qed simp
qed
show "\<forall>xa \<in> lin x. \<forall>a. a \<cdot> xa \<in> lin x"
proof (intro ballI allI)
fix x1 a assume "x1 \<in> lin x"
thus "a \<cdot> x1 \<in> lin x"
proof (unfold lin_def, elim CollectE exE conjE,
intro CollectI exI conjI)
fix a1 assume "x1 = a1 \<cdot> x"
show "a \<cdot> x1 = (a * a1) \<cdot> x" by (simp!)
qed simp
qed
qed
text {* Any linear closure is a vector space. *}
lemma lin_vs [intro?]:
"is_vectorspace V \<Longrightarrow> x \<in> V \<Longrightarrow> is_vectorspace (lin x)"
proof (rule subspace_vs)
assume "is_vectorspace V" "x \<in> V"
show "is_subspace (lin x) V" ..
qed
subsection {* Sum of two vectorspaces *}
text {*
The \emph{sum} of two vectorspaces @{text U} and @{text V} is the
set of all sums of elements from @{text U} and @{text V}.
*}
instance set :: (plus) plus ..
defs (overloaded)
vs_sum_def: "U + V \<equiv> {u + v | u v. u \<in> U \<and> v \<in> V}"
lemma vs_sumD:
"(x \<in> U + V) = (\<exists>u \<in> U. \<exists>v \<in> V. x = u + v)"
by (unfold vs_sum_def) fast
lemmas vs_sumE = vs_sumD [THEN iffD1, elim_format, standard]
lemma vs_sumI [intro?]:
"x \<in> U \<Longrightarrow> y \<in> V \<Longrightarrow> t = x + y \<Longrightarrow> t \<in> U + V"
by (unfold vs_sum_def) fast
text {* @{text U} is a subspace of @{text "U + V"}. *}
lemma subspace_vs_sum1 [intro?]:
"is_vectorspace U \<Longrightarrow> is_vectorspace V
\<Longrightarrow> is_subspace U (U + V)"
proof
assume "is_vectorspace U" "is_vectorspace V"
show "0 \<in> U" ..
show "U \<subseteq> U + V"
proof (intro subsetI vs_sumI)
fix x assume "x \<in> U"
show "x = x + 0" by (simp!)
show "0 \<in> V" by (simp!)
qed
show "\<forall>x \<in> U. \<forall>y \<in> U. x + y \<in> U"
proof (intro ballI)
fix x y assume "x \<in> U" "y \<in> U" show "x + y \<in> U" by (simp!)
qed
show "\<forall>x \<in> U. \<forall>a. a \<cdot> x \<in> U"
proof (intro ballI allI)
fix x a assume "x \<in> U" show "a \<cdot> x \<in> U" by (simp!)
qed
qed
text{* The sum of two subspaces is again a subspace.*}
lemma vs_sum_subspace [intro?]:
"is_subspace U E \<Longrightarrow> is_subspace V E \<Longrightarrow> is_vectorspace E
\<Longrightarrow> is_subspace (U + V) E"
proof
assume "is_subspace U E" "is_subspace V E" "is_vectorspace E"
show "0 \<in> U + V"
proof (intro vs_sumI)
show "0 \<in> U" ..
show "0 \<in> V" ..
show "(0::'a) = 0 + 0" by (simp!)
qed
show "U + V \<subseteq> E"
proof (intro subsetI, elim vs_sumE bexE)
fix x u v assume "u \<in> U" "v \<in> V" "x = u + v"
show "x \<in> E" by (simp!)
qed
show "\<forall>x \<in> U + V. \<forall>y \<in> U + V. x + y \<in> U + V"
proof (intro ballI)
fix x y assume "x \<in> U + V" "y \<in> U + V"
thus "x + y \<in> U + V"
proof (elim vs_sumE bexE, intro vs_sumI)
fix ux vx uy vy
assume "ux \<in> U" "vx \<in> V" "x = ux + vx"
and "uy \<in> U" "vy \<in> V" "y = uy + vy"
show "x + y = (ux + uy) + (vx + vy)" by (simp!)
qed (simp_all!)
qed
show "\<forall>x \<in> U + V. \<forall>a. a \<cdot> x \<in> U + V"
proof (intro ballI allI)
fix x a assume "x \<in> U + V"
thus "a \<cdot> x \<in> U + V"
proof (elim vs_sumE bexE, intro vs_sumI)
fix a x u v assume "u \<in> U" "v \<in> V" "x = u + v"
show "a \<cdot> x = (a \<cdot> u) + (a \<cdot> v)"
by (simp! add: vs_add_mult_distrib1)
qed (simp_all!)
qed
qed
text{* The sum of two subspaces is a vectorspace. *}
lemma vs_sum_vs [intro?]:
"is_subspace U E \<Longrightarrow> is_subspace V E \<Longrightarrow> is_vectorspace E
\<Longrightarrow> is_vectorspace (U + V)"
proof (rule subspace_vs)
assume "is_subspace U E" "is_subspace V E" "is_vectorspace E"
show "is_subspace (U + V) E" ..
qed
subsection {* Direct sums *}
text {*
The sum of @{text U} and @{text V} is called \emph{direct}, iff the
zero element is the only common element of @{text U} and @{text
V}. For every element @{text x} of the direct sum of @{text U} and
@{text V} the decomposition in @{text "x = u + v"} with
@{text "u \<in> U"} and @{text "v \<in> V"} is unique.
*}
lemma decomp:
"is_vectorspace E \<Longrightarrow> is_subspace U E \<Longrightarrow> is_subspace V E \<Longrightarrow>
U \<inter> V = {0} \<Longrightarrow> u1 \<in> U \<Longrightarrow> u2 \<in> U \<Longrightarrow> v1 \<in> V \<Longrightarrow> v2 \<in> V \<Longrightarrow>
u1 + v1 = u2 + v2 \<Longrightarrow> u1 = u2 \<and> v1 = v2"
proof
assume "is_vectorspace E" "is_subspace U E" "is_subspace V E"
"U \<inter> V = {0}" "u1 \<in> U" "u2 \<in> U" "v1 \<in> V" "v2 \<in> V"
"u1 + v1 = u2 + v2"
have eq: "u1 - u2 = v2 - v1" by (simp! add: vs_add_diff_swap)
have u: "u1 - u2 \<in> U" by (simp!)
with eq have v': "v2 - v1 \<in> U" by simp
have v: "v2 - v1 \<in> V" by (simp!)
with eq have u': "u1 - u2 \<in> V" by simp
show "u1 = u2"
proof (rule vs_add_minus_eq)
show "u1 - u2 = 0" by (rule Int_singletonD [OF _ u u'])
show "u1 \<in> E" ..
show "u2 \<in> E" ..
qed
show "v1 = v2"
proof (rule vs_add_minus_eq [symmetric])
show "v2 - v1 = 0" by (rule Int_singletonD [OF _ v' v])
show "v1 \<in> E" ..
show "v2 \<in> E" ..
qed
qed
text {*
An application of the previous lemma will be used in the proof of
the Hahn-Banach Theorem (see page \pageref{decomp-H-use}): for any
element @{text "y + a \<cdot> x\<^sub>0"} of the direct sum of a
vectorspace @{text H} and the linear closure of @{text "x\<^sub>0"}
the components @{text "y \<in> H"} and @{text a} are uniquely
determined.
*}
lemma decomp_H':
"is_vectorspace E \<Longrightarrow> is_subspace H E \<Longrightarrow> y1 \<in> H \<Longrightarrow> y2 \<in> H \<Longrightarrow>
x' \<notin> H \<Longrightarrow> x' \<in> E \<Longrightarrow> x' \<noteq> 0 \<Longrightarrow> y1 + a1 \<cdot> x' = y2 + a2 \<cdot> x'
\<Longrightarrow> y1 = y2 \<and> a1 = a2"
proof
assume "is_vectorspace E" and h: "is_subspace H E"
and "y1 \<in> H" "y2 \<in> H" "x' \<notin> H" "x' \<in> E" "x' \<noteq> 0"
"y1 + a1 \<cdot> x' = y2 + a2 \<cdot> x'"
have c: "y1 = y2 \<and> a1 \<cdot> x' = a2 \<cdot> x'"
proof (rule decomp)
show "a1 \<cdot> x' \<in> lin x'" ..
show "a2 \<cdot> x' \<in> lin x'" ..
show "H \<inter> (lin x') = {0}"
proof
show "H \<inter> lin x' \<subseteq> {0}"
proof (intro subsetI, elim IntE, rule singleton_iff [THEN iffD2])
fix x assume "x \<in> H" "x \<in> lin x'"
thus "x = 0"
proof (unfold lin_def, elim CollectE exE conjE)
fix a assume "x = a \<cdot> x'"
show ?thesis
proof cases
assume "a = (0::real)" show ?thesis by (simp!)
next
assume "a \<noteq> (0::real)"
from h have "inverse a \<cdot> a \<cdot> x' \<in> H"
by (rule subspace_mult_closed) (simp!)
also have "inverse a \<cdot> a \<cdot> x' = x'" by (simp!)
finally have "x' \<in> H" .
thus ?thesis by contradiction
qed
qed
qed
show "{0} \<subseteq> H \<inter> lin x'"
proof -
have "0 \<in> H \<inter> lin x'"
proof (rule IntI)
show "0 \<in> H" ..
from lin_vs show "0 \<in> lin x'" ..
qed
thus ?thesis by simp
qed
qed
show "is_subspace (lin x') E" ..
qed
from c show "y1 = y2" by simp
show "a1 = a2"
proof (rule vs_mult_right_cancel [THEN iffD1])
from c show "a1 \<cdot> x' = a2 \<cdot> x'" by simp
qed
qed
text {*
Since for any element @{text "y + a \<cdot> x'"} of the direct sum of a
vectorspace @{text H} and the linear closure of @{text x'} the
components @{text "y \<in> H"} and @{text a} are unique, it follows from
@{text "y \<in> H"} that @{text "a = 0"}.
*}
lemma decomp_H'_H:
"is_vectorspace E \<Longrightarrow> is_subspace H E \<Longrightarrow> t \<in> H \<Longrightarrow> x' \<notin> H \<Longrightarrow> x' \<in> E
\<Longrightarrow> x' \<noteq> 0
\<Longrightarrow> (SOME (y, a). t = y + a \<cdot> x' \<and> y \<in> H) = (t, (0::real))"
proof (rule, unfold split_tupled_all)
assume "is_vectorspace E" "is_subspace H E" "t \<in> H" "x' \<notin> H" "x' \<in> E"
"x' \<noteq> 0"
have h: "is_vectorspace H" ..
fix y a presume t1: "t = y + a \<cdot> x'" and "y \<in> H"
have "y = t \<and> a = (0::real)"
by (rule decomp_H') (auto!)
thus "(y, a) = (t, (0::real))" by (simp!)
qed (simp_all!)
text {*
The components @{text "y \<in> H"} and @{text a} in @{text "y + a \<cdot> x'"}
are unique, so the function @{text h'} defined by
@{text "h' (y + a \<cdot> x') = h y + a \<cdot> \<xi>"} is definite.
*}
lemma h'_definite:
"h' \<equiv> (\<lambda>x. let (y, a) = SOME (y, a). (x = y + a \<cdot> x' \<and> y \<in> H)
in (h y) + a * xi) \<Longrightarrow>
x = y + a \<cdot> x' \<Longrightarrow> is_vectorspace E \<Longrightarrow> is_subspace H E \<Longrightarrow>
y \<in> H \<Longrightarrow> x' \<notin> H \<Longrightarrow> x' \<in> E \<Longrightarrow> x' \<noteq> 0
\<Longrightarrow> h' x = h y + a * xi"
proof -
assume
"h' \<equiv> (\<lambda>x. let (y, a) = SOME (y, a). (x = y + a \<cdot> x' \<and> y \<in> H)
in (h y) + a * xi)"
"x = y + a \<cdot> x'" "is_vectorspace E" "is_subspace H E"
"y \<in> H" "x' \<notin> H" "x' \<in> E" "x' \<noteq> 0"
hence "x \<in> H + (lin x')"
by (auto simp add: vs_sum_def lin_def)
have "\<exists>! xa. ((\<lambda>(y, a). x = y + a \<cdot> x' \<and> y \<in> H) xa)"
proof
show "\<exists>xa. ((\<lambda>(y, a). x = y + a \<cdot> x' \<and> y \<in> H) xa)"
by (blast!)
next
fix xa ya
assume "(\<lambda>(y,a). x = y + a \<cdot> x' \<and> y \<in> H) xa"
"(\<lambda>(y,a). x = y + a \<cdot> x' \<and> y \<in> H) ya"
show "xa = ya"
proof -
show "fst xa = fst ya \<and> snd xa = snd ya \<Longrightarrow> xa = ya"
by (simp add: Pair_fst_snd_eq)
have x: "x = fst xa + snd xa \<cdot> x' \<and> fst xa \<in> H"
by (auto!)
have y: "x = fst ya + snd ya \<cdot> x' \<and> fst ya \<in> H"
by (auto!)
from x y show "fst xa = fst ya \<and> snd xa = snd ya"
by (elim conjE) (rule decomp_H', (simp!)+)
qed
qed
hence eq: "(SOME (y, a). x = y + a \<cdot> x' \<and> y \<in> H) = (y, a)"
by (rule some1_equality) (blast!)
thus "h' x = h y + a * xi" by (simp! add: Let_def)
qed
end