src/HOL/Tools/SMT/smt_replay_methods.ML
author wenzelm
Sat, 01 Jun 2019 11:29:59 +0200
changeset 70299 83774d669b51
parent 69597 ff784d5a5bfb
child 72458 b44e894796d5
permissions -rw-r--r--
Added tag Isabelle2019-RC4 for changeset ad2d84c42380

(*  Title:      HOL/Tools/SMT/smt_replay_methods.ML
    Author:     Sascha Boehme, TU Muenchen
    Author:     Jasmin Blanchette, TU Muenchen
    Author:     Mathias Fleury, MPII

Proof methods for replaying SMT proofs.
*)

signature SMT_REPLAY_METHODS =
sig
  val pretty_goal: Proof.context -> string -> string -> thm list -> term -> Pretty.T
  val trace_goal: Proof.context -> string -> thm list -> term -> unit
  val trace: Proof.context -> (unit -> string) -> unit

  val replay_error: Proof.context -> string -> string -> thm list -> term -> 'a
  val replay_rule_error: Proof.context -> string -> thm list -> term -> 'a

  (*theory lemma methods*)
  type th_lemma_method = Proof.context -> thm list -> term -> thm
  val add_th_lemma_method: string * th_lemma_method -> Context.generic ->
    Context.generic
  val get_th_lemma_method: Proof.context -> th_lemma_method Symtab.table
  val discharge: int -> thm list -> thm -> thm
  val match_instantiate: Proof.context -> term -> thm -> thm
  val prove: Proof.context -> term -> (Proof.context -> int -> tactic) -> thm

  (*abstraction*)
  type abs_context = int * term Termtab.table
  type 'a abstracter = term -> abs_context -> 'a * abs_context
  val add_arith_abstracter: (term abstracter -> term option abstracter) ->
    Context.generic -> Context.generic

  val abstract_lit: term -> abs_context -> term * abs_context
  val abstract_conj: term -> abs_context -> term * abs_context
  val abstract_disj: term -> abs_context -> term * abs_context
  val abstract_not:  (term -> abs_context -> term * abs_context) ->
    term -> abs_context -> term * abs_context
  val abstract_unit:  term -> abs_context -> term * abs_context
  val abstract_prop: term -> abs_context -> term * abs_context
  val abstract_term:  term -> abs_context -> term * abs_context
  val abstract_arith: Proof.context -> term -> abs_context -> term * abs_context

  val prove_abstract:  Proof.context -> thm list -> term ->
    (Proof.context -> thm list -> int -> tactic) ->
    (abs_context -> (term list * term) * abs_context) -> thm
  val prove_abstract': Proof.context -> term -> (Proof.context -> thm list -> int -> tactic) ->
    (abs_context -> term * abs_context) -> thm
  val try_provers:  Proof.context -> string -> (string * (term -> 'a)) list -> thm list -> term ->
    'a

  (*shared tactics*)
  val cong_basic: Proof.context -> thm list -> term -> thm
  val cong_full: Proof.context -> thm list -> term -> thm
  val cong_unfolding_first: Proof.context -> thm list -> term -> thm

  val certify_prop: Proof.context -> term -> cterm

end;

structure SMT_Replay_Methods: SMT_REPLAY_METHODS =
struct

(* utility functions *)

fun trace ctxt f = SMT_Config.trace_msg ctxt f ()

fun pretty_thm ctxt thm = Syntax.pretty_term ctxt (Thm.concl_of thm)

fun pretty_goal ctxt msg rule thms t =
  let
    val full_msg = msg ^ ": " ^ quote rule
    val assms =
      if null thms then []
      else [Pretty.big_list "assumptions:" (map (pretty_thm ctxt) thms)]
    val concl = Pretty.big_list "proposition:" [Syntax.pretty_term ctxt t]
  in Pretty.big_list full_msg (assms @ [concl]) end

fun replay_error ctxt msg rule thms t = error (Pretty.string_of (pretty_goal ctxt msg rule thms t))

fun replay_rule_error ctxt = replay_error ctxt "Failed to replay Z3 proof step"

fun trace_goal ctxt rule thms t =
  trace ctxt (fn () => Pretty.string_of (pretty_goal ctxt "Goal" rule thms t))

fun as_prop (t as Const (\<^const_name>\<open>Trueprop\<close>, _) $ _) = t
  | as_prop t = HOLogic.mk_Trueprop t

fun dest_prop (Const (\<^const_name>\<open>Trueprop\<close>, _) $ t) = t
  | dest_prop t = t

fun dest_thm thm = dest_prop (Thm.concl_of thm)


(* plug-ins *)

type abs_context = int * term Termtab.table

type 'a abstracter = term -> abs_context -> 'a * abs_context

type th_lemma_method = Proof.context -> thm list -> term -> thm

fun id_ord ((id1, _), (id2, _)) = int_ord (id1, id2)

structure Plugins = Generic_Data
(
  type T =
    (int * (term abstracter -> term option abstracter)) list *
    th_lemma_method Symtab.table
  val empty = ([], Symtab.empty)
  val extend = I
  fun merge ((abss1, ths1), (abss2, ths2)) = (
    Ord_List.merge id_ord (abss1, abss2),
    Symtab.merge (K true) (ths1, ths2))
)

fun add_arith_abstracter abs = Plugins.map (apfst (Ord_List.insert id_ord (serial (), abs)))
fun get_arith_abstracters ctxt = map snd (fst (Plugins.get (Context.Proof ctxt)))

fun add_th_lemma_method method = Plugins.map (apsnd (Symtab.update_new method))
fun get_th_lemma_method ctxt = snd (Plugins.get (Context.Proof ctxt))

fun match ctxt pat t =
  (Vartab.empty, Vartab.empty)
  |> Pattern.first_order_match (Proof_Context.theory_of ctxt) (pat, t)

fun gen_certify_inst sel cert ctxt thm t =
  let
    val inst = match ctxt (dest_thm thm) (dest_prop t)
    fun cert_inst (ix, (a, b)) = ((ix, a), cert b)
  in Vartab.fold (cons o cert_inst) (sel inst) [] end

fun match_instantiateT ctxt t thm =
  if Term.exists_type (Term.exists_subtype Term.is_TVar) (dest_thm thm) then
    Thm.instantiate (gen_certify_inst fst (Thm.ctyp_of ctxt) ctxt thm t, []) thm
  else thm

fun match_instantiate ctxt t thm =
  let val thm' = match_instantiateT ctxt t thm in
    Thm.instantiate ([], gen_certify_inst snd (Thm.cterm_of ctxt) ctxt thm' t) thm'
  end

fun discharge _ [] thm = thm
  | discharge i (rule :: rules) thm = discharge (i + Thm.nprems_of rule) rules (rule RSN (i, thm))

fun by_tac ctxt thms ns ts t tac =
  Goal.prove ctxt [] (map as_prop ts) (as_prop t)
    (fn {context, prems} => HEADGOAL (tac context prems))
  |> Drule.generalize ([], ns)
  |> discharge 1 thms

fun prove ctxt t tac = by_tac ctxt [] [] [] t (K o tac)


(* abstraction *)

fun prove_abstract ctxt thms t tac f =
  let
    val ((prems, concl), (_, ts)) = f (1, Termtab.empty)
    val ns = Termtab.fold (fn (_, v) => cons (fst (Term.dest_Free v))) ts []
  in
    by_tac ctxt [] ns prems concl tac
    |> match_instantiate ctxt t
    |> discharge 1 thms
  end

fun prove_abstract' ctxt t tac f =
  prove_abstract ctxt [] t tac (f #>> pair [])

fun lookup_term (_, terms) t = Termtab.lookup terms t

fun abstract_sub t f cx =
  (case lookup_term cx t of
    SOME v => (v, cx)
  | NONE => f cx)

fun mk_fresh_free t (i, terms) =
  let val v = Free ("t" ^ string_of_int i, fastype_of t)
  in (v, (i + 1, Termtab.update (t, v) terms)) end

fun apply_abstracters _ [] _ cx = (NONE, cx)
  | apply_abstracters abs (abstracter :: abstracters) t cx =
      (case abstracter abs t cx of
        (NONE, _) => apply_abstracters abs abstracters t cx
      | x as (SOME _, _) => x)

fun abstract_term (t as _ $ _) = abstract_sub t (mk_fresh_free t)
  | abstract_term (t as Abs _) = abstract_sub t (mk_fresh_free t)
  | abstract_term t = pair t

fun abstract_bin abs f t t1 t2 = abstract_sub t (abs t1 ##>> abs t2 #>> f)

fun abstract_ter abs f t t1 t2 t3 =
  abstract_sub t (abs t1 ##>> abs t2 ##>> abs t3 #>> (Scan.triple1 #> f))

fun abstract_lit (\<^const>\<open>HOL.Not\<close> $ t) = abstract_term t #>> HOLogic.mk_not
  | abstract_lit t = abstract_term t

fun abstract_not abs (t as \<^const>\<open>HOL.Not\<close> $ t1) =
      abstract_sub t (abs t1 #>> HOLogic.mk_not)
  | abstract_not _ t = abstract_lit t

fun abstract_conj (t as \<^const>\<open>HOL.conj\<close> $ t1 $ t2) =
      abstract_bin abstract_conj HOLogic.mk_conj t t1 t2
  | abstract_conj t = abstract_lit t

fun abstract_disj (t as \<^const>\<open>HOL.disj\<close> $ t1 $ t2) =
      abstract_bin abstract_disj HOLogic.mk_disj t t1 t2
  | abstract_disj t = abstract_lit t

fun abstract_prop (t as (c as @{const If (bool)}) $ t1 $ t2 $ t3) =
      abstract_ter abstract_prop (fn (t1, t2, t3) => c $ t1 $ t2 $ t3) t t1 t2 t3
  | abstract_prop (t as \<^const>\<open>HOL.disj\<close> $ t1 $ t2) =
      abstract_bin abstract_prop HOLogic.mk_disj t t1 t2
  | abstract_prop (t as \<^const>\<open>HOL.conj\<close> $ t1 $ t2) =
      abstract_bin abstract_prop HOLogic.mk_conj t t1 t2
  | abstract_prop (t as \<^const>\<open>HOL.implies\<close> $ t1 $ t2) =
      abstract_bin abstract_prop HOLogic.mk_imp t t1 t2
  | abstract_prop (t as \<^term>\<open>HOL.eq :: bool => _\<close> $ t1 $ t2) =
      abstract_bin abstract_prop HOLogic.mk_eq t t1 t2
  | abstract_prop t = abstract_not abstract_prop t

fun abstract_arith ctxt u =
  let
    fun abs (t as (c as Const (\<^const_name>\<open>Hilbert_Choice.Eps\<close>, _) $ Abs (s, T, t'))) =
          abstract_sub t (abstract_term t)
      | abs (t as (c as Const _) $ Abs (s, T, t')) =
          abstract_sub t (abs t' #>> (fn u' => c $ Abs (s, T, u')))
      | abs (t as (c as Const (\<^const_name>\<open>If\<close>, _)) $ t1 $ t2 $ t3) =
          abstract_ter abs (fn (t1, t2, t3) => c $ t1 $ t2 $ t3) t t1 t2 t3
      | abs (t as \<^const>\<open>HOL.Not\<close> $ t1) = abstract_sub t (abs t1 #>> HOLogic.mk_not)
      | abs (t as \<^const>\<open>HOL.disj\<close> $ t1 $ t2) =
          abstract_sub t (abs t1 ##>> abs t2 #>> HOLogic.mk_disj)
      | abs (t as (c as Const (\<^const_name>\<open>uminus_class.uminus\<close>, _)) $ t1) =
          abstract_sub t (abs t1 #>> (fn u => c $ u))
      | abs (t as (c as Const (\<^const_name>\<open>plus_class.plus\<close>, _)) $ t1 $ t2) =
          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
      | abs (t as (c as Const (\<^const_name>\<open>minus_class.minus\<close>, _)) $ t1 $ t2) =
          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
      | abs (t as (c as Const (\<^const_name>\<open>times_class.times\<close>, _)) $ t1 $ t2) =
          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
      | abs (t as (c as Const (\<^const_name>\<open>z3div\<close>, _)) $ t1 $ t2) =
          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
      | abs (t as (c as Const (\<^const_name>\<open>z3mod\<close>, _)) $ t1 $ t2) =
          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
      | abs (t as (c as Const (\<^const_name>\<open>HOL.eq\<close>, _)) $ t1 $ t2) =
          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
      | abs (t as (c as Const (\<^const_name>\<open>ord_class.less\<close>, _)) $ t1 $ t2) =
          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
      | abs (t as (c as Const (\<^const_name>\<open>ord_class.less_eq\<close>, _)) $ t1 $ t2) =
          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
      | abs t = abstract_sub t (fn cx =>
          if can HOLogic.dest_number t then (t, cx)
          else
            (case apply_abstracters abs (get_arith_abstracters ctxt) t cx of
              (SOME u, cx') => (u, cx')
            | (NONE, _) => abstract_term t cx))
  in abs u end

fun abstract_unit (t as (\<^const>\<open>HOL.Not\<close> $ (\<^const>\<open>HOL.disj\<close> $ t1 $ t2))) =
      abstract_sub t (abstract_unit t1 ##>> abstract_unit t2 #>>
        HOLogic.mk_not o HOLogic.mk_disj)
  | abstract_unit (t as (\<^const>\<open>HOL.disj\<close> $ t1 $ t2)) =
      abstract_sub t (abstract_unit t1 ##>> abstract_unit t2 #>>
        HOLogic.mk_disj)
  | abstract_unit (t as (Const(\<^const_name>\<open>HOL.eq\<close>, _) $ t1 $ t2)) =
      if fastype_of t1 = \<^typ>\<open>bool\<close> then
        abstract_sub t (abstract_unit t1 ##>> abstract_unit t2 #>>
          HOLogic.mk_eq)
      else abstract_lit t
  | abstract_unit (t as (\<^const>\<open>HOL.Not\<close> $ Const(\<^const_name>\<open>HOL.eq\<close>, _) $ t1 $ t2)) =
      if fastype_of t1 = \<^typ>\<open>bool\<close> then
        abstract_sub t (abstract_unit t1 ##>> abstract_unit t2 #>>
          HOLogic.mk_eq #>> HOLogic.mk_not)
      else abstract_lit t
  | abstract_unit (t as (\<^const>\<open>HOL.Not\<close> $ t1)) =
      abstract_sub t (abstract_unit t1 #>> HOLogic.mk_not)
  | abstract_unit t = abstract_lit t


(* theory lemmas *)

fun try_provers ctxt rule [] thms t = replay_rule_error ctxt rule thms t
  | try_provers ctxt rule ((name, prover) :: named_provers) thms t =
      (case (trace ctxt (K ("Trying prover " ^ quote name)); try prover t) of
        SOME thm => thm
      | NONE => try_provers ctxt rule named_provers thms t)


(* congruence *)

fun certify_prop ctxt t = Thm.cterm_of ctxt (as_prop t)

fun ctac ctxt prems i st = st |> (
  resolve_tac ctxt (@{thm refl} :: prems) i
  ORELSE (cong_tac ctxt i THEN ctac ctxt prems (i + 1) THEN ctac ctxt prems i))

fun cong_basic ctxt thms t =
  let val st = Thm.trivial (certify_prop ctxt t)
  in
    (case Seq.pull (ctac ctxt thms 1 st) of
      SOME (thm, _) => thm
    | NONE => raise THM ("cong", 0, thms @ [st]))
  end

val cong_dest_rules = @{lemma
  "(\<not> P \<or> Q) \<and> (P \<or> \<not> Q) \<Longrightarrow> P = Q"
  "(P \<or> \<not> Q) \<and> (\<not> P \<or> Q) \<Longrightarrow> P = Q"
  by fast+}

fun cong_full_core_tac ctxt =
  eresolve_tac ctxt @{thms subst}
  THEN' resolve_tac ctxt @{thms refl}
  ORELSE' Classical.fast_tac ctxt

fun cong_full ctxt thms t = prove ctxt t (fn ctxt' =>
  Method.insert_tac ctxt thms
  THEN' (cong_full_core_tac ctxt'
    ORELSE' dresolve_tac ctxt cong_dest_rules
    THEN' cong_full_core_tac ctxt'))

fun cong_unfolding_first ctxt thms t =
  let val reorder_for_simp = try (fn thm =>
    let val t = Thm.prop_of ( @{thm eq_reflection} OF [thm])
          val thm = (case Logic.dest_equals t of
               (t1, t2) => if Term.size_of_term t1 > Term.size_of_term t2 then @{thm eq_reflection} OF [thm]
                   else @{thm eq_reflection} OF [thm OF @{thms sym}])
               handle TERM("dest_equals", _) =>  @{thm eq_reflection} OF [thm]
    in thm end)
  in
    prove ctxt t (fn ctxt =>
      Raw_Simplifier.rewrite_goal_tac ctxt
        (map_filter reorder_for_simp thms)
      THEN' Method.insert_tac ctxt thms
     THEN' K (Clasimp.auto_tac ctxt))
  end

end;