src/HOL/Auth/Guard/Guard_Public.thy
author wenzelm
Sat, 11 Dec 2021 11:24:48 +0100
changeset 74913 c2a2be496f35
parent 69597 ff784d5a5bfb
child 76287 cdc14f94c754
permissions -rw-r--r--
tuned;

(*  Title:      HOL/Auth/Guard/Guard_Public.thy
    Author:     Frederic Blanqui, University of Cambridge Computer Laboratory
    Copyright   2002  University of Cambridge

Lemmas on guarded messages for public protocols.
*)

theory Guard_Public imports Guard "../Public" Extensions begin

subsection\<open>Extensions to Theory \<open>Public\<close>\<close>

declare initState.simps [simp del]

subsubsection\<open>signature\<close>

definition sign :: "agent => msg => msg" where
"sign A X == \<lbrace>Agent A, X, Crypt (priK A) (Hash X)\<rbrace>"

lemma sign_inj [iff]: "(sign A X = sign A' X') = (A=A' & X=X')"
by (auto simp: sign_def)

subsubsection\<open>agent associated to a key\<close>

definition agt :: "key => agent" where
"agt K == SOME A. K = priK A | K = pubK A"

lemma agt_priK [simp]: "agt (priK A) = A"
by (simp add: agt_def)

lemma agt_pubK [simp]: "agt (pubK A) = A"
by (simp add: agt_def)

subsubsection\<open>basic facts about \<^term>\<open>initState\<close>\<close>

lemma no_Crypt_in_parts_init [simp]: "Crypt K X \<notin> parts (initState A)"
by (cases A, auto simp: initState.simps)

lemma no_Crypt_in_analz_init [simp]: "Crypt K X \<notin> analz (initState A)"
by auto

lemma no_priK_in_analz_init [simp]: "A \<notin> bad
\<Longrightarrow> Key (priK A) \<notin> analz (initState Spy)"
by (auto simp: initState.simps)

lemma priK_notin_initState_Friend [simp]: "A \<noteq> Friend C
\<Longrightarrow> Key (priK A) \<notin> parts (initState (Friend C))"
by (auto simp: initState.simps)

lemma keyset_init [iff]: "keyset (initState A)"
by (cases A, auto simp: keyset_def initState.simps)

subsubsection\<open>sets of private keys\<close>

definition priK_set :: "key set => bool" where
"priK_set Ks \<equiv> \<forall>K. K \<in> Ks \<longrightarrow> (\<exists>A. K = priK A)"

lemma in_priK_set: "[| priK_set Ks; K \<in> Ks |] ==> \<exists>A. K = priK A"
by (simp add: priK_set_def)

lemma priK_set1 [iff]: "priK_set {priK A}"
by (simp add: priK_set_def)

lemma priK_set2 [iff]: "priK_set {priK A, priK B}"
by (simp add: priK_set_def)

subsubsection\<open>sets of good keys\<close>

definition good :: "key set => bool" where
"good Ks == \<forall>K. K \<in> Ks \<longrightarrow> agt K \<notin> bad"

lemma in_good: "[| good Ks; K \<in> Ks |] ==> agt K \<notin> bad"
by (simp add: good_def)

lemma good1 [simp]: "A \<notin> bad \<Longrightarrow> good {priK A}"
by (simp add: good_def)

lemma good2 [simp]: "[| A \<notin> bad; B \<notin> bad |] ==> good {priK A, priK B}"
by (simp add: good_def)

subsubsection\<open>greatest nonce used in a trace, 0 if there is no nonce\<close>

primrec greatest :: "event list => nat"
where
  "greatest [] = 0"
| "greatest (ev # evs) = max (greatest_msg (msg ev)) (greatest evs)"

lemma greatest_is_greatest: "Nonce n \<in> used evs \<Longrightarrow> n \<le> greatest evs"
apply (induct evs, auto simp: initState.simps)
apply (drule used_sub_parts_used, safe)
apply (drule greatest_msg_is_greatest, arith)
by simp

subsubsection\<open>function giving a new nonce\<close>

definition new :: "event list \<Rightarrow> nat" where
"new evs \<equiv> Suc (greatest evs)"

lemma new_isnt_used [iff]: "Nonce (new evs) \<notin> used evs"
by (clarify, drule greatest_is_greatest, auto simp: new_def)

subsection\<open>Proofs About Guarded Messages\<close>

subsubsection\<open>small hack necessary because priK is defined as the inverse of pubK\<close>

lemma pubK_is_invKey_priK: "pubK A = invKey (priK A)"
by simp

lemmas pubK_is_invKey_priK_substI = pubK_is_invKey_priK [THEN ssubst]

lemmas invKey_invKey_substI = invKey [THEN ssubst]

lemma "Nonce n \<in> parts {X} \<Longrightarrow> Crypt (pubK A) X \<in> guard n {priK A}"
apply (rule pubK_is_invKey_priK_substI, rule invKey_invKey_substI)
by (rule Guard_Nonce, simp+)

subsubsection\<open>guardedness results\<close>

lemma sign_guard [intro]: "X \<in> guard n Ks \<Longrightarrow> sign A X \<in> guard n Ks"
by (auto simp: sign_def)

lemma Guard_init [iff]: "Guard n Ks (initState B)"
by (induct B, auto simp: Guard_def initState.simps)

lemma Guard_knows_max': "Guard n Ks (knows_max' C evs)
==> Guard n Ks (knows_max C evs)"
by (simp add: knows_max_def)

lemma Nonce_not_used_Guard_spies [dest]: "Nonce n \<notin> used evs
\<Longrightarrow> Guard n Ks (spies evs)"
by (auto simp: Guard_def dest: not_used_not_known parts_sub)

lemma Nonce_not_used_Guard [dest]: "[| evs \<in> p; Nonce n \<notin> used evs;
Gets_correct p; one_step p |] ==> Guard n Ks (knows (Friend C) evs)"
by (auto simp: Guard_def dest: known_used parts_trans)

lemma Nonce_not_used_Guard_max [dest]: "[| evs \<in> p; Nonce n \<notin> used evs;
Gets_correct p; one_step p |] ==> Guard n Ks (knows_max (Friend C) evs)"
by (auto simp: Guard_def dest: known_max_used parts_trans)

lemma Nonce_not_used_Guard_max' [dest]: "[| evs \<in> p; Nonce n \<notin> used evs;
Gets_correct p; one_step p |] ==> Guard n Ks (knows_max' (Friend C) evs)"
apply (rule_tac H="knows_max (Friend C) evs" in Guard_mono)
by (auto simp: knows_max_def)

subsubsection\<open>regular protocols\<close>

definition regular :: "event list set \<Rightarrow> bool" where
"regular p \<equiv> \<forall>evs A. evs \<in> p \<longrightarrow> (Key (priK A) \<in> parts (spies evs)) = (A \<in> bad)"

lemma priK_parts_iff_bad [simp]: "[| evs \<in> p; regular p |] ==>
(Key (priK A) \<in> parts (spies evs)) = (A \<in> bad)"
by (auto simp: regular_def)

lemma priK_analz_iff_bad [simp]: "[| evs \<in> p; regular p |] ==>
(Key (priK A) \<in> analz (spies evs)) = (A \<in> bad)"
by auto

lemma Guard_Nonce_analz: "[| Guard n Ks (spies evs); evs \<in> p;
priK_set Ks; good Ks; regular p |] ==> Nonce n \<notin> analz (spies evs)"
apply (clarify, simp only: knows_decomp)
apply (drule Guard_invKey_keyset, simp+, safe)
apply (drule in_good, simp)
apply (drule in_priK_set, simp+, clarify)
apply (frule_tac A=A in priK_analz_iff_bad)
by (simp add: knows_decomp)+

end