(* Title: FOL/ex/list
ID: $Id$
Author: Tobias Nipkow
Copyright 1991 University of Cambridge
For ex/list.thy. Examples of simplification and induction on lists
*)
open List;
val prems = goal List.thy "[| P([]); !!x l. P(x.l) |] ==> All(P)";
by (rtac list_ind 1);
by (REPEAT (resolve_tac (prems@[allI,impI]) 1));
qed "list_exh";
val list_rew_thms = [list_distinct1,list_distinct2,app_nil,app_cons,
hd_eq,tl_eq,forall_nil,forall_cons,list_free,
len_nil,len_cons,at_0,at_succ];
val list_ss = nat_ss addsimps list_rew_thms;
goal List.thy "~l=[] --> hd(l).tl(l) = l";
by(IND_TAC list_exh (simp_tac list_ss) "l" 1);
result();
goal List.thy "(l1++l2)++l3 = l1++(l2++l3)";
by(IND_TAC list_ind (simp_tac list_ss) "l1" 1);
qed "append_assoc";
goal List.thy "l++[] = l";
by(IND_TAC list_ind (simp_tac list_ss) "l" 1);
qed "app_nil_right";
goal List.thy "l1++l2=[] <-> l1=[] & l2=[]";
by(IND_TAC list_exh (simp_tac list_ss) "l1" 1);
qed "app_eq_nil_iff";
goal List.thy "forall(l++l',P) <-> forall(l,P) & forall(l',P)";
by(IND_TAC list_ind (simp_tac list_ss) "l" 1);
qed "forall_app";
goal List.thy "forall(l,%x.P(x)&Q(x)) <-> forall(l,P) & forall(l,Q)";
by(IND_TAC list_ind (simp_tac list_ss) "l" 1);
by(fast_tac FOL_cs 1);
qed "forall_conj";
goal List.thy "~l=[] --> forall(l,P) <-> P(hd(l)) & forall(tl(l),P)";
by(IND_TAC list_ind (simp_tac list_ss) "l" 1);
qed "forall_ne";
(*** Lists with natural numbers ***)
goal List.thy "len(l1++l2) = len(l1)+len(l2)";
by (IND_TAC list_ind (simp_tac list_ss) "l1" 1);
qed "len_app";
goal List.thy "i<len(l1) --> at(l1++l2,i) = at(l1,i)";
by (IND_TAC list_ind (simp_tac list_ss) "l1" 1);
by (REPEAT (rtac allI 1));
by (rtac impI 1);
by (ALL_IND_TAC nat_exh (asm_simp_tac list_ss) 1);
qed "at_app1";
goal List.thy "at(l1++(x.l2), len(l1)) = x";
by (IND_TAC list_ind (simp_tac list_ss) "l1" 1);
qed "at_app_hd2";