(* Title: HOL/IOA/NTP/Multiset.thy
ID: $Id$
Author: Tobias Nipkow & Konrad Slind
Copyright 1994 TU Muenchen
Axiomatic multisets.
Should be done as a subtype and moved to a global place.
*)
Multiset = Arith + "Lemmas" +
types
'a multiset
arities
multiset :: (term) term
consts
"{|}" :: "'a multiset" ("{|}")
addm :: "['a multiset, 'a] => 'a multiset"
delm :: "['a multiset, 'a] => 'a multiset"
countm :: "['a multiset, 'a => bool] => nat"
count :: "['a multiset, 'a] => nat"
rules
delm_empty_def
"delm {|} x = {|}"
delm_nonempty_def
"delm (addm M x) y == (if x=y then M else addm (delm M y) x)"
countm_empty_def
"countm {|} P == 0"
countm_nonempty_def
"countm (addm M x) P == countm M P + (if P x then Suc 0 else 0)"
count_def
"count M x == countm M (%y.y = x)"
induction
"[| P({|}); !!M x. P(M) ==> P(addm M x) |] ==> P(M)"
end