(* Title: HOL/ex/insort.ML
ID: $Id$
Author: Tobias Nipkow
Copyright 1994 TU Muenchen
Correctness proof of insertion sort.
*)
val insort_ss = sorting_ss addsimps
[InSort.ins_Nil,InSort.ins_Cons,InSort.insort_Nil,InSort.insort_Cons];
goalw InSort.thy [Sorting.total_def]
"!!f. [| total(f); ~f x y |] ==> f y x";
by(fast_tac HOL_cs 1);
qed "totalD";
goalw InSort.thy [Sorting.transf_def]
"!!f. [| transf(f); f b a |] ==> !x. f a x --> f b x";
by(fast_tac HOL_cs 1);
qed "transfD";
goal InSort.thy "list_all p (ins f x xs) = (list_all p xs & p(x))";
by(list.induct_tac "xs" 1);
by(asm_simp_tac insort_ss 1);
by(asm_simp_tac (insort_ss setloop (split_tac [expand_if])) 1);
by(fast_tac HOL_cs 1);
val insort_ss = insort_ss addsimps [result()];
goal InSort.thy "(!x. p(x) --> q(x)) --> list_all p xs --> list_all q xs";
by(list.induct_tac "xs" 1);
by(ALLGOALS(asm_simp_tac (insort_ss setloop (split_tac [expand_if]))));
qed "list_all_imp";
val prems = goal InSort.thy
"[| total(f); transf(f) |] ==> sorted f (ins f x xs) = sorted f xs";
by(list.induct_tac "xs" 1);
by(ALLGOALS(asm_simp_tac (insort_ss setloop (split_tac [expand_if]))));
by(cut_facts_tac prems 1);
by(cut_inst_tac [("p","f(a)"),("q","f(x)")] list_all_imp 1);
by(fast_tac (HOL_cs addDs [totalD,transfD]) 1);
val insort_ss = insort_ss addsimps [result()];
goal InSort.thy "!!f. [| total(f); transf(f) |] ==> sorted f (insort f xs)";
by(list.induct_tac "xs" 1);
by(ALLGOALS(asm_simp_tac insort_ss));
result();