author | paulson |
Thu, 18 Jan 1996 10:38:29 +0100 | |
changeset 1444 | 23ceb1dc9755 |
parent 1440 | de6f18da81bb |
child 1573 | 6d66b59f94a9 |
permissions | -rw-r--r-- |
(* Title: CLattice.thy ID: $Id$ Author: Markus Wenzel, TU Muenchen Complete lattices are orders with infima and suprema of arbitrary subsets. TODO: derive some more well-known theorems (e.g. ex_Inf == ex_Sup) *) CLattice = Order + axclass clattice < order ex_Inf "ALL A. EX inf. is_Inf A inf" ex_Sup "ALL A. EX sup. is_Sup A sup" consts Inf :: "'a::clattice set => 'a" Sup :: "'a::clattice set => 'a" defs Inf_def "Inf A == @inf. is_Inf A inf" Sup_def "Sup A == @sup. is_Sup A sup" end