src/FOL/ex/Nat.ML
author paulson
Tue, 16 Jul 1996 15:49:46 +0200
changeset 1868 836950047d85
parent 1459 d12da312eff4
child 2469 b50b8c0eec01
permissions -rw-r--r--
Put in minimal simpset to avoid excessive simplification, just as in revision 1.9 of HOL/indrule.ML

(*  Title:      FOL/ex/nat.ML
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1992  University of Cambridge

Examples for the manual "Introduction to Isabelle"

Proofs about the natural numbers

INCOMPATIBLE with nat2.ML, Nipkow's examples

To generate similar output to manual, execute these commands:
    Pretty.setmargin 72; print_depth 0;
*)

open Nat;

goal Nat.thy "Suc(k) ~= k";
by (res_inst_tac [("n","k")] induct 1);
by (rtac notI 1);
by (etac Suc_neq_0 1);
by (rtac notI 1);
by (etac notE 1);
by (etac Suc_inject 1);
qed "Suc_n_not_n";


goal Nat.thy "(k+m)+n = k+(m+n)";
prths ([induct] RL [topthm()]);  (*prints all 14 next states!*)
by (rtac induct 1);
back();
back();
back();
back();
back();
back();

goalw Nat.thy [add_def] "0+n = n";
by (rtac rec_0 1);
qed "add_0";

goalw Nat.thy [add_def] "Suc(m)+n = Suc(m+n)";
by (rtac rec_Suc 1);
qed "add_Suc";

val add_ss = FOL_ss addsimps [add_0, add_Suc];

goal Nat.thy "(k+m)+n = k+(m+n)";
by (res_inst_tac [("n","k")] induct 1);
by (simp_tac add_ss 1);
by (asm_simp_tac add_ss 1);
qed "add_assoc";

goal Nat.thy "m+0 = m";
by (res_inst_tac [("n","m")] induct 1);
by (simp_tac add_ss 1);
by (asm_simp_tac add_ss 1);
qed "add_0_right";

goal Nat.thy "m+Suc(n) = Suc(m+n)";
by (res_inst_tac [("n","m")] induct 1);
by (ALLGOALS (asm_simp_tac add_ss));
qed "add_Suc_right";

val [prem] = goal Nat.thy "(!!n. f(Suc(n)) = Suc(f(n))) ==> f(i+j) = i+f(j)";
by (res_inst_tac [("n","i")] induct 1);
by (simp_tac add_ss 1);
by (asm_simp_tac (add_ss addsimps [prem]) 1);
result();