Put in minimal simpset to avoid excessive simplification,
just as in revision 1.9 of HOL/indrule.ML
(* Title: FOL/ex/NatClass.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
This is Nat.ML trivially modified to make it work with NatClass.thy.
*)
open NatClass;
goal NatClass.thy "Suc(k) ~= (k::'a::nat)";
by (res_inst_tac [("n","k")] induct 1);
by (rtac notI 1);
by (etac Suc_neq_0 1);
by (rtac notI 1);
by (etac notE 1);
by (etac Suc_inject 1);
qed "Suc_n_not_n";
goal NatClass.thy "(k+m)+n = k+(m+n)";
prths ([induct] RL [topthm()]); (*prints all 14 next states!*)
by (rtac induct 1);
back();
back();
back();
back();
back();
back();
goalw NatClass.thy [add_def] "0+n = n";
by (rtac rec_0 1);
qed "add_0";
goalw NatClass.thy [add_def] "Suc(m)+n = Suc(m+n)";
by (rtac rec_Suc 1);
qed "add_Suc";
val add_ss = FOL_ss addsimps [add_0, add_Suc];
goal NatClass.thy "(k+m)+n = k+(m+n)";
by (res_inst_tac [("n","k")] induct 1);
by (simp_tac add_ss 1);
by (asm_simp_tac add_ss 1);
qed "add_assoc";
goal NatClass.thy "m+0 = m";
by (res_inst_tac [("n","m")] induct 1);
by (simp_tac add_ss 1);
by (asm_simp_tac add_ss 1);
qed "add_0_right";
goal NatClass.thy "m+Suc(n) = Suc(m+n)";
by (res_inst_tac [("n","m")] induct 1);
by (ALLGOALS (asm_simp_tac add_ss));
qed "add_Suc_right";
val [prem] = goal NatClass.thy "(!!n. f(Suc(n)) = Suc(f(n))) ==> f(i+j) = i+f(j)";
by (res_inst_tac [("n","i")] induct 1);
by (simp_tac add_ss 1);
by (asm_simp_tac (add_ss addsimps [prem]) 1);
result();