(* Title: HOL/RelPow.thy ID: $Id$ Author: Tobias Nipkow Copyright 1996 TU Muenchen R^n = R O ... O R, the n-fold composition of R *) RelPow = Nat + consts "^" :: "('a * 'a) set => nat => ('a * 'a) set" (infixr 100) primrec "op ^" nat "R^0 = id" "R^(Suc n) = R O (R^n)" end