src/ZF/Integ/Bin.thy
author wenzelm
Thu, 15 Feb 2001 17:18:54 +0100
changeset 11145 3e47692e3a3e
parent 9570 e16e168984e1
child 11381 4ab3b7b0938f
permissions -rw-r--r--
eliminate get_def;

(*  Title:      ZF/ex/Bin.thy
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1994  University of Cambridge

Arithmetic on binary integers.

   The sign Pls stands for an infinite string of leading 0's.
   The sign Min stands for an infinite string of leading 1's.

A number can have multiple representations, namely leading 0's with sign
Pls and leading 1's with sign Min.  See twos-compl.ML/int_of_binary for
the numerical interpretation.

The representation expects that (m mod 2) is 0 or 1, even if m is negative;
For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1

Division is not defined yet!
*)

Bin = Int + Datatype +

consts  bin :: i
datatype
  "bin" = Pls
        | Min
        | Bit ("w: bin", "b: bool")	(infixl "BIT" 90)

syntax
  "_Int"           :: xnum => i        ("_")

consts
  integ_of  :: i=>i
  NCons     :: [i,i]=>i
  bin_succ  :: i=>i
  bin_pred  :: i=>i
  bin_minus :: i=>i
  bin_add   :: [i,i]=>i
  bin_adder :: i=>i
  bin_mult  :: [i,i]=>i

primrec
  integ_of_Pls  "integ_of (Pls)     = $# 0"
  integ_of_Min  "integ_of (Min)     = $-($#1)"
  integ_of_BIT  "integ_of (w BIT b) = $#b $+ integ_of(w) $+ integ_of(w)"

    (** recall that cond(1,b,c)=b and cond(0,b,c)=0 **)

primrec (*NCons adds a bit, suppressing leading 0s and 1s*)
  NCons_Pls "NCons (Pls,b)     = cond(b,Pls BIT b,Pls)"
  NCons_Min "NCons (Min,b)     = cond(b,Min,Min BIT b)"
  NCons_BIT "NCons (w BIT c,b) = w BIT c BIT b"

primrec (*successor.  If a BIT, can change a 0 to a 1 without recursion.*)
  bin_succ_Pls  "bin_succ (Pls)     = Pls BIT 1"
  bin_succ_Min  "bin_succ (Min)     = Pls"
  bin_succ_BIT  "bin_succ (w BIT b) = cond(b, bin_succ(w) BIT 0, NCons(w,1))"

primrec (*predecessor*)
  bin_pred_Pls  "bin_pred (Pls)     = Min"
  bin_pred_Min  "bin_pred (Min)     = Min BIT 0"
  bin_pred_BIT  "bin_pred (w BIT b) = cond(b, NCons(w,0), bin_pred(w) BIT 1)"

primrec (*unary negation*)
  bin_minus_Pls
    "bin_minus (Pls)       = Pls"
  bin_minus_Min
    "bin_minus (Min)       = Pls BIT 1"
  bin_minus_BIT
    "bin_minus (w BIT b) = cond(b, bin_pred(NCons(bin_minus(w),0)),
				bin_minus(w) BIT 0)"

primrec (*sum*)
  bin_adder_Pls
    "bin_adder (Pls)     = (lam w:bin. w)"
  bin_adder_Min
    "bin_adder (Min)     = (lam w:bin. bin_pred(w))"
  bin_adder_BIT
    "bin_adder (v BIT x) = 
       (lam w:bin. 
         bin_case (v BIT x, bin_pred(v BIT x), 
                   %w y. NCons(bin_adder (v) ` cond(x and y, bin_succ(w), w),  
                               x xor y),
                   w))"

(*The bin_case above replaces the following mutually recursive function:
primrec
  "adding (v,x,Pls)     = v BIT x"
  "adding (v,x,Min)     = bin_pred(v BIT x)"
  "adding (v,x,w BIT y) = NCons(bin_adder (v, cond(x and y, bin_succ(w), w)), 
				x xor y)"
*)

defs
  bin_add_def "bin_add(v,w) == bin_adder(v)`w"


primrec
  bin_mult_Pls
    "bin_mult (Pls,w)     = Pls"
  bin_mult_Min
    "bin_mult (Min,w)     = bin_minus(w)"
  bin_mult_BIT
    "bin_mult (v BIT b,w) = cond(b, bin_add(NCons(bin_mult(v,w),0),w),
				 NCons(bin_mult(v,w),0))"

setup NumeralSyntax.setup

end


ML