tuned proofs -- clarified flow of facts wrt. calculation;
(* Title: HOL/Rat.thy
Author: Markus Wenzel, TU Muenchen
*)
header {* Rational numbers *}
theory Rat
imports GCD Archimedean_Field
begin
subsection {* Rational numbers as quotient *}
subsubsection {* Construction of the type of rational numbers *}
definition
ratrel :: "(int \<times> int) \<Rightarrow> (int \<times> int) \<Rightarrow> bool" where
"ratrel = (\<lambda>x y. snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x)"
lemma ratrel_iff [simp]:
"ratrel x y \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
by (simp add: ratrel_def)
lemma exists_ratrel_refl: "\<exists>x. ratrel x x"
by (auto intro!: one_neq_zero)
lemma symp_ratrel: "symp ratrel"
by (simp add: ratrel_def symp_def)
lemma transp_ratrel: "transp ratrel"
proof (rule transpI, unfold split_paired_all)
fix a b a' b' a'' b'' :: int
assume A: "ratrel (a, b) (a', b')"
assume B: "ratrel (a', b') (a'', b'')"
have "b' * (a * b'') = b'' * (a * b')" by simp
also from A have "a * b' = a' * b" by auto
also have "b'' * (a' * b) = b * (a' * b'')" by simp
also from B have "a' * b'' = a'' * b'" by auto
also have "b * (a'' * b') = b' * (a'' * b)" by simp
finally have "b' * (a * b'') = b' * (a'' * b)" .
moreover from B have "b' \<noteq> 0" by auto
ultimately have "a * b'' = a'' * b" by simp
with A B show "ratrel (a, b) (a'', b'')" by auto
qed
lemma part_equivp_ratrel: "part_equivp ratrel"
by (rule part_equivpI [OF exists_ratrel_refl symp_ratrel transp_ratrel])
quotient_type rat = "int \<times> int" / partial: "ratrel"
morphisms Rep_Rat Abs_Rat
by (rule part_equivp_ratrel)
lemma Domainp_cr_rat [transfer_domain_rule]: "Domainp pcr_rat = (\<lambda>x. snd x \<noteq> 0)"
by (simp add: rat.domain_eq)
subsubsection {* Representation and basic operations *}
lift_definition Fract :: "int \<Rightarrow> int \<Rightarrow> rat"
is "\<lambda>a b. if b = 0 then (0, 1) else (a, b)"
by simp
lemma eq_rat:
shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
and "\<And>a. Fract a 0 = Fract 0 1"
and "\<And>a c. Fract 0 a = Fract 0 c"
by (transfer, simp)+
lemma Rat_cases [case_names Fract, cases type: rat]:
assumes "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
shows C
proof -
obtain a b :: int where "q = Fract a b" and "b \<noteq> 0"
by transfer simp
let ?a = "a div gcd a b"
let ?b = "b div gcd a b"
from `b \<noteq> 0` have "?b * gcd a b = b"
by (simp add: dvd_div_mult_self)
with `b \<noteq> 0` have "?b \<noteq> 0" by auto
from `q = Fract a b` `b \<noteq> 0` `?b \<noteq> 0` have q: "q = Fract ?a ?b"
by (simp add: eq_rat dvd_div_mult mult_commute [of a])
from `b \<noteq> 0` have coprime: "coprime ?a ?b"
by (auto intro: div_gcd_coprime_int)
show C proof (cases "b > 0")
case True
note assms
moreover note q
moreover from True have "?b > 0" by (simp add: nonneg1_imp_zdiv_pos_iff)
moreover note coprime
ultimately show C .
next
case False
note assms
moreover have "q = Fract (- ?a) (- ?b)" unfolding q by transfer simp
moreover from False `b \<noteq> 0` have "- ?b > 0" by (simp add: pos_imp_zdiv_neg_iff)
moreover from coprime have "coprime (- ?a) (- ?b)" by simp
ultimately show C .
qed
qed
lemma Rat_induct [case_names Fract, induct type: rat]:
assumes "\<And>a b. b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> P (Fract a b)"
shows "P q"
using assms by (cases q) simp
instantiation rat :: field_inverse_zero
begin
lift_definition zero_rat :: "rat" is "(0, 1)"
by simp
lift_definition one_rat :: "rat" is "(1, 1)"
by simp
lemma Zero_rat_def: "0 = Fract 0 1"
by transfer simp
lemma One_rat_def: "1 = Fract 1 1"
by transfer simp
lift_definition plus_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat"
is "\<lambda>x y. (fst x * snd y + fst y * snd x, snd x * snd y)"
by (clarsimp, simp add: distrib_right, simp add: mult_ac)
lemma add_rat [simp]:
assumes "b \<noteq> 0" and "d \<noteq> 0"
shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
using assms by transfer simp
lift_definition uminus_rat :: "rat \<Rightarrow> rat" is "\<lambda>x. (- fst x, snd x)"
by simp
lemma minus_rat [simp]: "- Fract a b = Fract (- a) b"
by transfer simp
lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b"
by (cases "b = 0") (simp_all add: eq_rat)
definition
diff_rat_def: "q - r = q + - (r::rat)"
lemma diff_rat [simp]:
assumes "b \<noteq> 0" and "d \<noteq> 0"
shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
using assms by (simp add: diff_rat_def)
lift_definition times_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat"
is "\<lambda>x y. (fst x * fst y, snd x * snd y)"
by (simp add: mult_ac)
lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)"
by transfer simp
lemma mult_rat_cancel:
assumes "c \<noteq> 0"
shows "Fract (c * a) (c * b) = Fract a b"
using assms by transfer simp
lift_definition inverse_rat :: "rat \<Rightarrow> rat"
is "\<lambda>x. if fst x = 0 then (0, 1) else (snd x, fst x)"
by (auto simp add: mult_commute)
lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a"
by transfer simp
definition
divide_rat_def: "q / r = q * inverse (r::rat)"
lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
by (simp add: divide_rat_def)
instance proof
fix q r s :: rat
show "(q * r) * s = q * (r * s)"
by transfer simp
show "q * r = r * q"
by transfer simp
show "1 * q = q"
by transfer simp
show "(q + r) + s = q + (r + s)"
by transfer (simp add: algebra_simps)
show "q + r = r + q"
by transfer simp
show "0 + q = q"
by transfer simp
show "- q + q = 0"
by transfer simp
show "q - r = q + - r"
by (fact diff_rat_def)
show "(q + r) * s = q * s + r * s"
by transfer (simp add: algebra_simps)
show "(0::rat) \<noteq> 1"
by transfer simp
{ assume "q \<noteq> 0" thus "inverse q * q = 1"
by transfer simp }
show "q / r = q * inverse r"
by (fact divide_rat_def)
show "inverse 0 = (0::rat)"
by transfer simp
qed
end
lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
by (induct k) (simp_all add: Zero_rat_def One_rat_def)
lemma of_int_rat: "of_int k = Fract k 1"
by (cases k rule: int_diff_cases) (simp add: of_nat_rat)
lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
by (rule of_nat_rat [symmetric])
lemma Fract_of_int_eq: "Fract k 1 = of_int k"
by (rule of_int_rat [symmetric])
lemma rat_number_collapse:
"Fract 0 k = 0"
"Fract 1 1 = 1"
"Fract (numeral w) 1 = numeral w"
"Fract (neg_numeral w) 1 = neg_numeral w"
"Fract k 0 = 0"
using Fract_of_int_eq [of "numeral w"]
using Fract_of_int_eq [of "neg_numeral w"]
by (simp_all add: Zero_rat_def One_rat_def eq_rat)
lemma rat_number_expand:
"0 = Fract 0 1"
"1 = Fract 1 1"
"numeral k = Fract (numeral k) 1"
"neg_numeral k = Fract (neg_numeral k) 1"
by (simp_all add: rat_number_collapse)
lemma Rat_cases_nonzero [case_names Fract 0]:
assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
assumes 0: "q = 0 \<Longrightarrow> C"
shows C
proof (cases "q = 0")
case True then show C using 0 by auto
next
case False
then obtain a b where "q = Fract a b" and "b > 0" and "coprime a b" by (cases q) auto
with False have "0 \<noteq> Fract a b" by simp
with `b > 0` have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat)
with Fract `q = Fract a b` `b > 0` `coprime a b` show C by blast
qed
subsubsection {* Function @{text normalize} *}
lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b"
proof (cases "b = 0")
case True then show ?thesis by (simp add: eq_rat)
next
case False
moreover have "b div gcd a b * gcd a b = b"
by (rule dvd_div_mult_self) simp
ultimately have "b div gcd a b \<noteq> 0" by auto
with False show ?thesis by (simp add: eq_rat dvd_div_mult mult_commute [of a])
qed
definition normalize :: "int \<times> int \<Rightarrow> int \<times> int" where
"normalize p = (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a))
else if snd p = 0 then (0, 1)
else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))"
lemma normalize_crossproduct:
assumes "q \<noteq> 0" "s \<noteq> 0"
assumes "normalize (p, q) = normalize (r, s)"
shows "p * s = r * q"
proof -
have aux: "p * gcd r s = sgn (q * s) * r * gcd p q \<Longrightarrow> q * gcd r s = sgn (q * s) * s * gcd p q \<Longrightarrow> p * s = q * r"
proof -
assume "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q"
then have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) = (q * gcd r s) * (sgn (q * s) * r * gcd p q)" by simp
with assms show "p * s = q * r" by (auto simp add: mult_ac sgn_times sgn_0_0)
qed
from assms show ?thesis
by (auto simp add: normalize_def Let_def dvd_div_div_eq_mult mult_commute sgn_times split: if_splits intro: aux)
qed
lemma normalize_eq: "normalize (a, b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
by (auto simp add: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse
split:split_if_asm)
lemma normalize_denom_pos: "normalize r = (p, q) \<Longrightarrow> q > 0"
by (auto simp add: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff
split:split_if_asm)
lemma normalize_coprime: "normalize r = (p, q) \<Longrightarrow> coprime p q"
by (auto simp add: normalize_def Let_def dvd_div_neg div_gcd_coprime_int
split:split_if_asm)
lemma normalize_stable [simp]:
"q > 0 \<Longrightarrow> coprime p q \<Longrightarrow> normalize (p, q) = (p, q)"
by (simp add: normalize_def)
lemma normalize_denom_zero [simp]:
"normalize (p, 0) = (0, 1)"
by (simp add: normalize_def)
lemma normalize_negative [simp]:
"q < 0 \<Longrightarrow> normalize (p, q) = normalize (- p, - q)"
by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div)
text{*
Decompose a fraction into normalized, i.e. coprime numerator and denominator:
*}
definition quotient_of :: "rat \<Rightarrow> int \<times> int" where
"quotient_of x = (THE pair. x = Fract (fst pair) (snd pair) &
snd pair > 0 & coprime (fst pair) (snd pair))"
lemma quotient_of_unique:
"\<exists>!p. r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
proof (cases r)
case (Fract a b)
then have "r = Fract (fst (a, b)) (snd (a, b)) \<and> snd (a, b) > 0 \<and> coprime (fst (a, b)) (snd (a, b))" by auto
then show ?thesis proof (rule ex1I)
fix p
obtain c d :: int where p: "p = (c, d)" by (cases p)
assume "r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
with p have Fract': "r = Fract c d" "d > 0" "coprime c d" by simp_all
have "c = a \<and> d = b"
proof (cases "a = 0")
case True with Fract Fract' show ?thesis by (simp add: eq_rat)
next
case False
with Fract Fract' have *: "c * b = a * d" and "c \<noteq> 0" by (auto simp add: eq_rat)
then have "c * b > 0 \<longleftrightarrow> a * d > 0" by auto
with `b > 0` `d > 0` have "a > 0 \<longleftrightarrow> c > 0" by (simp add: zero_less_mult_iff)
with `a \<noteq> 0` `c \<noteq> 0` have sgn: "sgn a = sgn c" by (auto simp add: not_less)
from `coprime a b` `coprime c d` have "\<bar>a\<bar> * \<bar>d\<bar> = \<bar>c\<bar> * \<bar>b\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> \<bar>d\<bar> = \<bar>b\<bar>"
by (simp add: coprime_crossproduct_int)
with `b > 0` `d > 0` have "\<bar>a\<bar> * d = \<bar>c\<bar> * b \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> d = b" by simp
then have "a * sgn a * d = c * sgn c * b \<longleftrightarrow> a * sgn a = c * sgn c \<and> d = b" by (simp add: abs_sgn)
with sgn * show ?thesis by (auto simp add: sgn_0_0)
qed
with p show "p = (a, b)" by simp
qed
qed
lemma quotient_of_Fract [code]:
"quotient_of (Fract a b) = normalize (a, b)"
proof -
have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract)
by (rule sym) (auto intro: normalize_eq)
moreover have "0 < snd (normalize (a, b))" (is ?denom_pos)
by (cases "normalize (a, b)") (rule normalize_denom_pos, simp)
moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime)
by (rule normalize_coprime) simp
ultimately have "?Fract \<and> ?denom_pos \<and> ?coprime" by blast
with quotient_of_unique have
"(THE p. Fract a b = Fract (fst p) (snd p) \<and> 0 < snd p \<and> coprime (fst p) (snd p)) = normalize (a, b)"
by (rule the1_equality)
then show ?thesis by (simp add: quotient_of_def)
qed
lemma quotient_of_number [simp]:
"quotient_of 0 = (0, 1)"
"quotient_of 1 = (1, 1)"
"quotient_of (numeral k) = (numeral k, 1)"
"quotient_of (neg_numeral k) = (neg_numeral k, 1)"
by (simp_all add: rat_number_expand quotient_of_Fract)
lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
by (simp add: quotient_of_Fract normalize_eq)
lemma quotient_of_denom_pos: "quotient_of r = (p, q) \<Longrightarrow> q > 0"
by (cases r) (simp add: quotient_of_Fract normalize_denom_pos)
lemma quotient_of_coprime: "quotient_of r = (p, q) \<Longrightarrow> coprime p q"
by (cases r) (simp add: quotient_of_Fract normalize_coprime)
lemma quotient_of_inject:
assumes "quotient_of a = quotient_of b"
shows "a = b"
proof -
obtain p q r s where a: "a = Fract p q"
and b: "b = Fract r s"
and "q > 0" and "s > 0" by (cases a, cases b)
with assms show ?thesis by (simp add: eq_rat quotient_of_Fract normalize_crossproduct)
qed
lemma quotient_of_inject_eq:
"quotient_of a = quotient_of b \<longleftrightarrow> a = b"
by (auto simp add: quotient_of_inject)
subsubsection {* Various *}
lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l"
by (simp add: Fract_of_int_eq [symmetric])
lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1"
by (simp add: rat_number_expand)
lemma quotient_of_div:
assumes r: "quotient_of r = (n,d)"
shows "r = of_int n / of_int d"
proof -
from theI'[OF quotient_of_unique[of r], unfolded r[unfolded quotient_of_def]]
have "r = Fract n d" by simp
thus ?thesis using Fract_of_int_quotient by simp
qed
subsubsection {* The ordered field of rational numbers *}
lift_definition positive :: "rat \<Rightarrow> bool"
is "\<lambda>x. 0 < fst x * snd x"
proof (clarsimp)
fix a b c d :: int
assume "b \<noteq> 0" and "d \<noteq> 0" and "a * d = c * b"
hence "a * d * b * d = c * b * b * d"
by simp
hence "a * b * d\<^sup>2 = c * d * b\<^sup>2"
unfolding power2_eq_square by (simp add: mult_ac)
hence "0 < a * b * d\<^sup>2 \<longleftrightarrow> 0 < c * d * b\<^sup>2"
by simp
thus "0 < a * b \<longleftrightarrow> 0 < c * d"
using `b \<noteq> 0` and `d \<noteq> 0`
by (simp add: zero_less_mult_iff)
qed
lemma positive_zero: "\<not> positive 0"
by transfer simp
lemma positive_add:
"positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)"
apply transfer
apply (simp add: zero_less_mult_iff)
apply (elim disjE, simp_all add: add_pos_pos add_neg_neg
mult_pos_pos mult_pos_neg mult_neg_pos mult_neg_neg)
done
lemma positive_mult:
"positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)"
by transfer (drule (1) mult_pos_pos, simp add: mult_ac)
lemma positive_minus:
"\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)"
by transfer (force simp: neq_iff zero_less_mult_iff mult_less_0_iff)
instantiation rat :: linordered_field_inverse_zero
begin
definition
"x < y \<longleftrightarrow> positive (y - x)"
definition
"x \<le> (y::rat) \<longleftrightarrow> x < y \<or> x = y"
definition
"abs (a::rat) = (if a < 0 then - a else a)"
definition
"sgn (a::rat) = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
instance proof
fix a b c :: rat
show "\<bar>a\<bar> = (if a < 0 then - a else a)"
by (rule abs_rat_def)
show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a"
unfolding less_eq_rat_def less_rat_def
by (auto, drule (1) positive_add, simp_all add: positive_zero)
show "a \<le> a"
unfolding less_eq_rat_def by simp
show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c"
unfolding less_eq_rat_def less_rat_def
by (auto, drule (1) positive_add, simp add: algebra_simps)
show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b"
unfolding less_eq_rat_def less_rat_def
by (auto, drule (1) positive_add, simp add: positive_zero)
show "a \<le> b \<Longrightarrow> c + a \<le> c + b"
unfolding less_eq_rat_def less_rat_def by (auto simp: diff_minus)
show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
by (rule sgn_rat_def)
show "a \<le> b \<or> b \<le> a"
unfolding less_eq_rat_def less_rat_def
by (auto dest!: positive_minus)
show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
unfolding less_rat_def
by (drule (1) positive_mult, simp add: algebra_simps)
qed
end
instantiation rat :: distrib_lattice
begin
definition
"(inf :: rat \<Rightarrow> rat \<Rightarrow> rat) = min"
definition
"(sup :: rat \<Rightarrow> rat \<Rightarrow> rat) = max"
instance proof
qed (auto simp add: inf_rat_def sup_rat_def min_max.sup_inf_distrib1)
end
lemma positive_rat: "positive (Fract a b) \<longleftrightarrow> 0 < a * b"
by transfer simp
lemma less_rat [simp]:
assumes "b \<noteq> 0" and "d \<noteq> 0"
shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
using assms unfolding less_rat_def
by (simp add: positive_rat algebra_simps)
lemma le_rat [simp]:
assumes "b \<noteq> 0" and "d \<noteq> 0"
shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
using assms unfolding le_less by (simp add: eq_rat)
lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff)
lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)"
unfolding Fract_of_int_eq
by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat)
(auto simp: rat_number_collapse not_less le_less zero_less_mult_iff)
lemma Rat_induct_pos [case_names Fract, induct type: rat]:
assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
shows "P q"
proof (cases q)
have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
proof -
fix a::int and b::int
assume b: "b < 0"
hence "0 < -b" by simp
hence "P (Fract (-a) (-b))" by (rule step)
thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
qed
case (Fract a b)
thus "P q" by (force simp add: linorder_neq_iff step step')
qed
lemma zero_less_Fract_iff:
"0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
by (simp add: Zero_rat_def zero_less_mult_iff)
lemma Fract_less_zero_iff:
"0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0"
by (simp add: Zero_rat_def mult_less_0_iff)
lemma zero_le_Fract_iff:
"0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a"
by (simp add: Zero_rat_def zero_le_mult_iff)
lemma Fract_le_zero_iff:
"0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0"
by (simp add: Zero_rat_def mult_le_0_iff)
lemma one_less_Fract_iff:
"0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a"
by (simp add: One_rat_def mult_less_cancel_right_disj)
lemma Fract_less_one_iff:
"0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b"
by (simp add: One_rat_def mult_less_cancel_right_disj)
lemma one_le_Fract_iff:
"0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a"
by (simp add: One_rat_def mult_le_cancel_right)
lemma Fract_le_one_iff:
"0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b"
by (simp add: One_rat_def mult_le_cancel_right)
subsubsection {* Rationals are an Archimedean field *}
lemma rat_floor_lemma:
shows "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)"
proof -
have "Fract a b = of_int (a div b) + Fract (a mod b) b"
by (cases "b = 0", simp, simp add: of_int_rat)
moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1"
unfolding Fract_of_int_quotient
by (rule linorder_cases [of b 0]) (simp add: divide_nonpos_neg, simp, simp add: divide_nonneg_pos)
ultimately show ?thesis by simp
qed
instance rat :: archimedean_field
proof
fix r :: rat
show "\<exists>z. r \<le> of_int z"
proof (induct r)
case (Fract a b)
have "Fract a b \<le> of_int (a div b + 1)"
using rat_floor_lemma [of a b] by simp
then show "\<exists>z. Fract a b \<le> of_int z" ..
qed
qed
instantiation rat :: floor_ceiling
begin
definition [code del]:
"floor (x::rat) = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"
instance proof
fix x :: rat
show "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)"
unfolding floor_rat_def using floor_exists1 by (rule theI')
qed
end
lemma floor_Fract: "floor (Fract a b) = a div b"
using rat_floor_lemma [of a b]
by (simp add: floor_unique)
subsection {* Linear arithmetic setup *}
declaration {*
K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
(* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *)
#> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_int_eq_iff} RS iffD2]
(* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *)
#> Lin_Arith.add_simps [@{thm neg_less_iff_less},
@{thm True_implies_equals},
read_instantiate @{context} [(("a", 0), "(numeral ?v)")] @{thm distrib_left},
read_instantiate @{context} [(("a", 0), "(neg_numeral ?v)")] @{thm distrib_left},
@{thm divide_1}, @{thm divide_zero_left},
@{thm times_divide_eq_right}, @{thm times_divide_eq_left},
@{thm minus_divide_left} RS sym, @{thm minus_divide_right} RS sym,
@{thm of_int_minus}, @{thm of_int_diff},
@{thm of_int_of_nat_eq}]
#> Lin_Arith.add_simprocs Numeral_Simprocs.field_cancel_numeral_factors
#> Lin_Arith.add_inj_const (@{const_name of_nat}, @{typ "nat => rat"})
#> Lin_Arith.add_inj_const (@{const_name of_int}, @{typ "int => rat"}))
*}
subsection {* Embedding from Rationals to other Fields *}
class field_char_0 = field + ring_char_0
subclass (in linordered_field) field_char_0 ..
context field_char_0
begin
lift_definition of_rat :: "rat \<Rightarrow> 'a"
is "\<lambda>x. of_int (fst x) / of_int (snd x)"
apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
apply (simp only: of_int_mult [symmetric])
done
end
lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
by transfer simp
lemma of_rat_0 [simp]: "of_rat 0 = 0"
by transfer simp
lemma of_rat_1 [simp]: "of_rat 1 = 1"
by transfer simp
lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
by transfer (simp add: add_frac_eq)
lemma of_rat_minus: "of_rat (- a) = - of_rat a"
by transfer simp
lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
by (simp only: diff_minus of_rat_add of_rat_minus)
lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
apply transfer
apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac)
done
lemma nonzero_of_rat_inverse:
"a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
apply (rule inverse_unique [symmetric])
apply (simp add: of_rat_mult [symmetric])
done
lemma of_rat_inverse:
"(of_rat (inverse a)::'a::{field_char_0, field_inverse_zero}) =
inverse (of_rat a)"
by (cases "a = 0", simp_all add: nonzero_of_rat_inverse)
lemma nonzero_of_rat_divide:
"b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
lemma of_rat_divide:
"(of_rat (a / b)::'a::{field_char_0, field_inverse_zero})
= of_rat a / of_rat b"
by (cases "b = 0") (simp_all add: nonzero_of_rat_divide)
lemma of_rat_power:
"(of_rat (a ^ n)::'a::field_char_0) = of_rat a ^ n"
by (induct n) (simp_all add: of_rat_mult)
lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
apply transfer
apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
done
lemma of_rat_less:
"(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s"
proof (induct r, induct s)
fix a b c d :: int
assume not_zero: "b > 0" "d > 0"
then have "b * d > 0" by (rule mult_pos_pos)
have of_int_divide_less_eq:
"(of_int a :: 'a) / of_int b < of_int c / of_int d
\<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b"
using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq)
show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d)
\<longleftrightarrow> Fract a b < Fract c d"
using not_zero `b * d > 0`
by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult)
qed
lemma of_rat_less_eq:
"(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s"
unfolding le_less by (auto simp add: of_rat_less)
lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified]
lemma of_rat_eq_id [simp]: "of_rat = id"
proof
fix a
show "of_rat a = id a"
by (induct a)
(simp add: of_rat_rat Fract_of_int_eq [symmetric])
qed
text{*Collapse nested embeddings*}
lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
by (induct n) (simp_all add: of_rat_add)
lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
by (cases z rule: int_diff_cases) (simp add: of_rat_diff)
lemma of_rat_numeral_eq [simp]:
"of_rat (numeral w) = numeral w"
using of_rat_of_int_eq [of "numeral w"] by simp
lemma of_rat_neg_numeral_eq [simp]:
"of_rat (neg_numeral w) = neg_numeral w"
using of_rat_of_int_eq [of "neg_numeral w"] by simp
lemmas zero_rat = Zero_rat_def
lemmas one_rat = One_rat_def
abbreviation
rat_of_nat :: "nat \<Rightarrow> rat"
where
"rat_of_nat \<equiv> of_nat"
abbreviation
rat_of_int :: "int \<Rightarrow> rat"
where
"rat_of_int \<equiv> of_int"
subsection {* The Set of Rational Numbers *}
context field_char_0
begin
definition
Rats :: "'a set" where
"Rats = range of_rat"
notation (xsymbols)
Rats ("\<rat>")
end
lemma Rats_of_rat [simp]: "of_rat r \<in> Rats"
by (simp add: Rats_def)
lemma Rats_of_int [simp]: "of_int z \<in> Rats"
by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat)
lemma Rats_of_nat [simp]: "of_nat n \<in> Rats"
by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat)
lemma Rats_number_of [simp]: "numeral w \<in> Rats"
by (subst of_rat_numeral_eq [symmetric], rule Rats_of_rat)
lemma Rats_neg_number_of [simp]: "neg_numeral w \<in> Rats"
by (subst of_rat_neg_numeral_eq [symmetric], rule Rats_of_rat)
lemma Rats_0 [simp]: "0 \<in> Rats"
apply (unfold Rats_def)
apply (rule range_eqI)
apply (rule of_rat_0 [symmetric])
done
lemma Rats_1 [simp]: "1 \<in> Rats"
apply (unfold Rats_def)
apply (rule range_eqI)
apply (rule of_rat_1 [symmetric])
done
lemma Rats_add [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a + b \<in> Rats"
apply (auto simp add: Rats_def)
apply (rule range_eqI)
apply (rule of_rat_add [symmetric])
done
lemma Rats_minus [simp]: "a \<in> Rats \<Longrightarrow> - a \<in> Rats"
apply (auto simp add: Rats_def)
apply (rule range_eqI)
apply (rule of_rat_minus [symmetric])
done
lemma Rats_diff [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a - b \<in> Rats"
apply (auto simp add: Rats_def)
apply (rule range_eqI)
apply (rule of_rat_diff [symmetric])
done
lemma Rats_mult [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a * b \<in> Rats"
apply (auto simp add: Rats_def)
apply (rule range_eqI)
apply (rule of_rat_mult [symmetric])
done
lemma nonzero_Rats_inverse:
fixes a :: "'a::field_char_0"
shows "\<lbrakk>a \<in> Rats; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Rats"
apply (auto simp add: Rats_def)
apply (rule range_eqI)
apply (erule nonzero_of_rat_inverse [symmetric])
done
lemma Rats_inverse [simp]:
fixes a :: "'a::{field_char_0, field_inverse_zero}"
shows "a \<in> Rats \<Longrightarrow> inverse a \<in> Rats"
apply (auto simp add: Rats_def)
apply (rule range_eqI)
apply (rule of_rat_inverse [symmetric])
done
lemma nonzero_Rats_divide:
fixes a b :: "'a::field_char_0"
shows "\<lbrakk>a \<in> Rats; b \<in> Rats; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
apply (auto simp add: Rats_def)
apply (rule range_eqI)
apply (erule nonzero_of_rat_divide [symmetric])
done
lemma Rats_divide [simp]:
fixes a b :: "'a::{field_char_0, field_inverse_zero}"
shows "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
apply (auto simp add: Rats_def)
apply (rule range_eqI)
apply (rule of_rat_divide [symmetric])
done
lemma Rats_power [simp]:
fixes a :: "'a::field_char_0"
shows "a \<in> Rats \<Longrightarrow> a ^ n \<in> Rats"
apply (auto simp add: Rats_def)
apply (rule range_eqI)
apply (rule of_rat_power [symmetric])
done
lemma Rats_cases [cases set: Rats]:
assumes "q \<in> \<rat>"
obtains (of_rat) r where "q = of_rat r"
proof -
from `q \<in> \<rat>` have "q \<in> range of_rat" unfolding Rats_def .
then obtain r where "q = of_rat r" ..
then show thesis ..
qed
lemma Rats_induct [case_names of_rat, induct set: Rats]:
"q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q"
by (rule Rats_cases) auto
subsection {* Implementation of rational numbers as pairs of integers *}
text {* Formal constructor *}
definition Frct :: "int \<times> int \<Rightarrow> rat" where
[simp]: "Frct p = Fract (fst p) (snd p)"
lemma [code abstype]:
"Frct (quotient_of q) = q"
by (cases q) (auto intro: quotient_of_eq)
text {* Numerals *}
declare quotient_of_Fract [code abstract]
definition of_int :: "int \<Rightarrow> rat"
where
[code_abbrev]: "of_int = Int.of_int"
hide_const (open) of_int
lemma quotient_of_int [code abstract]:
"quotient_of (Rat.of_int a) = (a, 1)"
by (simp add: of_int_def of_int_rat quotient_of_Fract)
lemma [code_unfold]:
"numeral k = Rat.of_int (numeral k)"
by (simp add: Rat.of_int_def)
lemma [code_unfold]:
"neg_numeral k = Rat.of_int (neg_numeral k)"
by (simp add: Rat.of_int_def)
lemma Frct_code_post [code_post]:
"Frct (0, a) = 0"
"Frct (a, 0) = 0"
"Frct (1, 1) = 1"
"Frct (numeral k, 1) = numeral k"
"Frct (neg_numeral k, 1) = neg_numeral k"
"Frct (1, numeral k) = 1 / numeral k"
"Frct (1, neg_numeral k) = 1 / neg_numeral k"
"Frct (numeral k, numeral l) = numeral k / numeral l"
"Frct (numeral k, neg_numeral l) = numeral k / neg_numeral l"
"Frct (neg_numeral k, numeral l) = neg_numeral k / numeral l"
"Frct (neg_numeral k, neg_numeral l) = neg_numeral k / neg_numeral l"
by (simp_all add: Fract_of_int_quotient)
text {* Operations *}
lemma rat_zero_code [code abstract]:
"quotient_of 0 = (0, 1)"
by (simp add: Zero_rat_def quotient_of_Fract normalize_def)
lemma rat_one_code [code abstract]:
"quotient_of 1 = (1, 1)"
by (simp add: One_rat_def quotient_of_Fract normalize_def)
lemma rat_plus_code [code abstract]:
"quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
in normalize (a * d + b * c, c * d))"
by (cases p, cases q) (simp add: quotient_of_Fract)
lemma rat_uminus_code [code abstract]:
"quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))"
by (cases p) (simp add: quotient_of_Fract)
lemma rat_minus_code [code abstract]:
"quotient_of (p - q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
in normalize (a * d - b * c, c * d))"
by (cases p, cases q) (simp add: quotient_of_Fract)
lemma rat_times_code [code abstract]:
"quotient_of (p * q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
in normalize (a * b, c * d))"
by (cases p, cases q) (simp add: quotient_of_Fract)
lemma rat_inverse_code [code abstract]:
"quotient_of (inverse p) = (let (a, b) = quotient_of p
in if a = 0 then (0, 1) else (sgn a * b, \<bar>a\<bar>))"
proof (cases p)
case (Fract a b) then show ?thesis
by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract gcd_int.commute)
qed
lemma rat_divide_code [code abstract]:
"quotient_of (p / q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
in normalize (a * d, c * b))"
by (cases p, cases q) (simp add: quotient_of_Fract)
lemma rat_abs_code [code abstract]:
"quotient_of \<bar>p\<bar> = (let (a, b) = quotient_of p in (\<bar>a\<bar>, b))"
by (cases p) (simp add: quotient_of_Fract)
lemma rat_sgn_code [code abstract]:
"quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)"
proof (cases p)
case (Fract a b) then show ?thesis
by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract)
qed
lemma rat_floor_code [code]:
"floor p = (let (a, b) = quotient_of p in a div b)"
by (cases p) (simp add: quotient_of_Fract floor_Fract)
instantiation rat :: equal
begin
definition [code]:
"HOL.equal a b \<longleftrightarrow> quotient_of a = quotient_of b"
instance proof
qed (simp add: equal_rat_def quotient_of_inject_eq)
lemma rat_eq_refl [code nbe]:
"HOL.equal (r::rat) r \<longleftrightarrow> True"
by (rule equal_refl)
end
lemma rat_less_eq_code [code]:
"p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)"
by (cases p, cases q) (simp add: quotient_of_Fract mult.commute)
lemma rat_less_code [code]:
"p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)"
by (cases p, cases q) (simp add: quotient_of_Fract mult.commute)
lemma [code]:
"of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)"
by (cases p) (simp add: quotient_of_Fract of_rat_rat)
text {* Quickcheck *}
definition (in term_syntax)
valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
[code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
notation fcomp (infixl "\<circ>>" 60)
notation scomp (infixl "\<circ>\<rightarrow>" 60)
instantiation rat :: random
begin
definition
"Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>num. Random.range i \<circ>\<rightarrow> (\<lambda>denom. Pair (
let j = int_of_integer (integer_of_natural (denom + 1))
in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))"
instance ..
end
no_notation fcomp (infixl "\<circ>>" 60)
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
instantiation rat :: exhaustive
begin
definition
"exhaustive_rat f d = Quickcheck_Exhaustive.exhaustive
(\<lambda>l. Quickcheck_Exhaustive.exhaustive (\<lambda>k. f (Fract k (int_of_integer (integer_of_natural l) + 1))) d) d"
instance ..
end
instantiation rat :: full_exhaustive
begin
definition
"full_exhaustive_rat f d = Quickcheck_Exhaustive.full_exhaustive (%(l, _). Quickcheck_Exhaustive.full_exhaustive (%k.
f (let j = int_of_integer (integer_of_natural l) + 1
in valterm_fract k (j, %_. Code_Evaluation.term_of j))) d) d"
instance ..
end
instantiation rat :: partial_term_of
begin
instance ..
end
lemma [code]:
"partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_variable p tt) == Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Rat.rat'') [])"
"partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_constructor 0 [l, k]) ==
Code_Evaluation.App (Code_Evaluation.Const (STR ''Rat.Frct'')
(Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []],
Typerep.Typerep (STR ''Rat.rat'') []])) (Code_Evaluation.App (Code_Evaluation.App (Code_Evaluation.Const (STR ''Product_Type.Pair'') (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []]]])) (partial_term_of (TYPE(int)) l)) (partial_term_of (TYPE(int)) k))"
by (rule partial_term_of_anything)+
instantiation rat :: narrowing
begin
definition
"narrowing = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.apply
(Quickcheck_Narrowing.cons (%nom denom. Fract nom denom)) narrowing) narrowing"
instance ..
end
subsection {* Setup for Nitpick *}
declaration {*
Nitpick_HOL.register_frac_type @{type_name rat}
[(@{const_name zero_rat_inst.zero_rat}, @{const_name Nitpick.zero_frac}),
(@{const_name one_rat_inst.one_rat}, @{const_name Nitpick.one_frac}),
(@{const_name plus_rat_inst.plus_rat}, @{const_name Nitpick.plus_frac}),
(@{const_name times_rat_inst.times_rat}, @{const_name Nitpick.times_frac}),
(@{const_name uminus_rat_inst.uminus_rat}, @{const_name Nitpick.uminus_frac}),
(@{const_name inverse_rat_inst.inverse_rat}, @{const_name Nitpick.inverse_frac}),
(@{const_name ord_rat_inst.less_rat}, @{const_name Nitpick.less_frac}),
(@{const_name ord_rat_inst.less_eq_rat}, @{const_name Nitpick.less_eq_frac}),
(@{const_name field_char_0_class.of_rat}, @{const_name Nitpick.of_frac})]
*}
lemmas [nitpick_unfold] = inverse_rat_inst.inverse_rat
one_rat_inst.one_rat ord_rat_inst.less_rat
ord_rat_inst.less_eq_rat plus_rat_inst.plus_rat times_rat_inst.times_rat
uminus_rat_inst.uminus_rat zero_rat_inst.zero_rat
subsection {* Float syntax *}
syntax "_Float" :: "float_const \<Rightarrow> 'a" ("_")
parse_translation {*
let
fun mk_number i =
let
fun mk 1 = Syntax.const @{const_syntax Num.One}
| mk i =
let val (q, r) = Integer.div_mod i 2
in HOLogic.mk_bit r $ (mk q) end;
in
if i = 0 then Syntax.const @{const_syntax Groups.zero}
else if i > 0 then Syntax.const @{const_syntax Num.numeral} $ mk i
else Syntax.const @{const_syntax Num.neg_numeral} $ mk (~i)
end;
fun mk_frac str =
let
val {mant = i, exp = n} = Lexicon.read_float str;
val exp = Syntax.const @{const_syntax Power.power};
val ten = mk_number 10;
val exp10 = if n = 1 then ten else exp $ ten $ mk_number n;
in Syntax.const @{const_syntax divide} $ mk_number i $ exp10 end;
fun float_tr [(c as Const (@{syntax_const "_constrain"}, _)) $ t $ u] = c $ float_tr [t] $ u
| float_tr [t as Const (str, _)] = mk_frac str
| float_tr ts = raise TERM ("float_tr", ts);
in [(@{syntax_const "_Float"}, K float_tr)] end
*}
text{* Test: *}
lemma "123.456 = -111.111 + 200 + 30 + 4 + 5/10 + 6/100 + (7/1000::rat)"
by simp
hide_const (open) normalize positive
lemmas [transfer_rule del] =
rat.rel_eq_transfer
Fract.transfer zero_rat.transfer one_rat.transfer plus_rat.transfer
uminus_rat.transfer times_rat.transfer inverse_rat.transfer
positive.transfer of_rat.transfer rat.right_unique rat.right_total
lemmas [transfer_domain_rule del] = Domainp_cr_rat rat.domain
text {* De-register @{text "rat"} as a quotient type: *}
declare Quotient_rat[quot_del]
end