(* Title: HOL/Parity.thy
Author: Jeremy Avigad
Author: Jacques D. Fleuriot
*)
section \<open>Parity in rings and semirings\<close>
theory Parity
imports Euclidean_Division
begin
subsection \<open>Ring structures with parity and \<open>even\<close>/\<open>odd\<close> predicates\<close>
class semiring_parity = comm_semiring_1 + semiring_modulo +
assumes even_iff_mod_2_eq_zero: "2 dvd a \<longleftrightarrow> a mod 2 = 0"
and odd_iff_mod_2_eq_one: "\<not> 2 dvd a \<longleftrightarrow> a mod 2 = 1"
and odd_one [simp]: "\<not> 2 dvd 1"
begin
abbreviation even :: "'a \<Rightarrow> bool"
where "even a \<equiv> 2 dvd a"
abbreviation odd :: "'a \<Rightarrow> bool"
where "odd a \<equiv> \<not> 2 dvd a"
lemma parity_cases [case_names even odd]:
assumes "even a \<Longrightarrow> a mod 2 = 0 \<Longrightarrow> P"
assumes "odd a \<Longrightarrow> a mod 2 = 1 \<Longrightarrow> P"
shows P
using assms by (cases "even a")
(simp_all add: even_iff_mod_2_eq_zero [symmetric] odd_iff_mod_2_eq_one [symmetric])
lemma not_mod_2_eq_0_eq_1 [simp]:
"a mod 2 \<noteq> 0 \<longleftrightarrow> a mod 2 = 1"
by (cases a rule: parity_cases) simp_all
lemma not_mod_2_eq_1_eq_0 [simp]:
"a mod 2 \<noteq> 1 \<longleftrightarrow> a mod 2 = 0"
by (cases a rule: parity_cases) simp_all
lemma mod2_eq_if: "a mod 2 = (if 2 dvd a then 0 else 1)"
by (simp add: even_iff_mod_2_eq_zero odd_iff_mod_2_eq_one)
lemma evenE [elim?]:
assumes "even a"
obtains b where "a = 2 * b"
using assms by (rule dvdE)
lemma oddE [elim?]:
assumes "odd a"
obtains b where "a = 2 * b + 1"
proof -
have "a = 2 * (a div 2) + a mod 2"
by (simp add: mult_div_mod_eq)
with assms have "a = 2 * (a div 2) + 1"
by (simp add: odd_iff_mod_2_eq_one)
then show ?thesis ..
qed
lemma mod_2_eq_odd:
"a mod 2 = of_bool (odd a)"
by (auto elim: oddE simp add: even_iff_mod_2_eq_zero)
lemma of_bool_odd_eq_mod_2:
"of_bool (odd a) = a mod 2"
by (simp add: mod_2_eq_odd)
lemma even_zero [simp]:
"even 0"
by (fact dvd_0_right)
lemma odd_even_add:
"even (a + b)" if "odd a" and "odd b"
proof -
from that obtain c d where "a = 2 * c + 1" and "b = 2 * d + 1"
by (blast elim: oddE)
then have "a + b = 2 * c + 2 * d + (1 + 1)"
by (simp only: ac_simps)
also have "\<dots> = 2 * (c + d + 1)"
by (simp add: algebra_simps)
finally show ?thesis ..
qed
lemma even_add [simp]:
"even (a + b) \<longleftrightarrow> (even a \<longleftrightarrow> even b)"
by (auto simp add: dvd_add_right_iff dvd_add_left_iff odd_even_add)
lemma odd_add [simp]:
"odd (a + b) \<longleftrightarrow> \<not> (odd a \<longleftrightarrow> odd b)"
by simp
lemma even_plus_one_iff [simp]:
"even (a + 1) \<longleftrightarrow> odd a"
by (auto simp add: dvd_add_right_iff intro: odd_even_add)
lemma even_mult_iff [simp]:
"even (a * b) \<longleftrightarrow> even a \<or> even b" (is "?P \<longleftrightarrow> ?Q")
proof
assume ?Q
then show ?P
by auto
next
assume ?P
show ?Q
proof (rule ccontr)
assume "\<not> (even a \<or> even b)"
then have "odd a" and "odd b"
by auto
then obtain r s where "a = 2 * r + 1" and "b = 2 * s + 1"
by (blast elim: oddE)
then have "a * b = (2 * r + 1) * (2 * s + 1)"
by simp
also have "\<dots> = 2 * (2 * r * s + r + s) + 1"
by (simp add: algebra_simps)
finally have "odd (a * b)"
by simp
with \<open>?P\<close> show False
by auto
qed
qed
lemma even_numeral [simp]: "even (numeral (Num.Bit0 n))"
proof -
have "even (2 * numeral n)"
unfolding even_mult_iff by simp
then have "even (numeral n + numeral n)"
unfolding mult_2 .
then show ?thesis
unfolding numeral.simps .
qed
lemma odd_numeral [simp]: "odd (numeral (Num.Bit1 n))"
proof
assume "even (numeral (num.Bit1 n))"
then have "even (numeral n + numeral n + 1)"
unfolding numeral.simps .
then have "even (2 * numeral n + 1)"
unfolding mult_2 .
then have "2 dvd numeral n * 2 + 1"
by (simp add: ac_simps)
then have "2 dvd 1"
using dvd_add_times_triv_left_iff [of 2 "numeral n" 1] by simp
then show False by simp
qed
lemma even_power [simp]: "even (a ^ n) \<longleftrightarrow> even a \<and> n > 0"
by (induct n) auto
end
class ring_parity = ring + semiring_parity
begin
subclass comm_ring_1 ..
lemma even_minus:
"even (- a) \<longleftrightarrow> even a"
by (fact dvd_minus_iff)
lemma even_diff [simp]:
"even (a - b) \<longleftrightarrow> even (a + b)"
using even_add [of a "- b"] by simp
end
subsection \<open>Special case: euclidean rings containing the natural numbers\<close>
class unique_euclidean_semiring_with_nat = semidom + semiring_char_0 + unique_euclidean_semiring +
assumes of_nat_div: "of_nat (m div n) = of_nat m div of_nat n"
and division_segment_of_nat [simp]: "division_segment (of_nat n) = 1"
and division_segment_euclidean_size [simp]: "division_segment a * of_nat (euclidean_size a) = a"
begin
lemma division_segment_eq_iff:
"a = b" if "division_segment a = division_segment b"
and "euclidean_size a = euclidean_size b"
using that division_segment_euclidean_size [of a] by simp
lemma euclidean_size_of_nat [simp]:
"euclidean_size (of_nat n) = n"
proof -
have "division_segment (of_nat n) * of_nat (euclidean_size (of_nat n)) = of_nat n"
by (fact division_segment_euclidean_size)
then show ?thesis by simp
qed
lemma of_nat_euclidean_size:
"of_nat (euclidean_size a) = a div division_segment a"
proof -
have "of_nat (euclidean_size a) = division_segment a * of_nat (euclidean_size a) div division_segment a"
by (subst nonzero_mult_div_cancel_left) simp_all
also have "\<dots> = a div division_segment a"
by simp
finally show ?thesis .
qed
lemma division_segment_1 [simp]:
"division_segment 1 = 1"
using division_segment_of_nat [of 1] by simp
lemma division_segment_numeral [simp]:
"division_segment (numeral k) = 1"
using division_segment_of_nat [of "numeral k"] by simp
lemma euclidean_size_1 [simp]:
"euclidean_size 1 = 1"
using euclidean_size_of_nat [of 1] by simp
lemma euclidean_size_numeral [simp]:
"euclidean_size (numeral k) = numeral k"
using euclidean_size_of_nat [of "numeral k"] by simp
lemma of_nat_dvd_iff:
"of_nat m dvd of_nat n \<longleftrightarrow> m dvd n" (is "?P \<longleftrightarrow> ?Q")
proof (cases "m = 0")
case True
then show ?thesis
by simp
next
case False
show ?thesis
proof
assume ?Q
then show ?P
by auto
next
assume ?P
with False have "of_nat n = of_nat n div of_nat m * of_nat m"
by simp
then have "of_nat n = of_nat (n div m * m)"
by (simp add: of_nat_div)
then have "n = n div m * m"
by (simp only: of_nat_eq_iff)
then have "n = m * (n div m)"
by (simp add: ac_simps)
then show ?Q ..
qed
qed
lemma of_nat_mod:
"of_nat (m mod n) = of_nat m mod of_nat n"
proof -
have "of_nat m div of_nat n * of_nat n + of_nat m mod of_nat n = of_nat m"
by (simp add: div_mult_mod_eq)
also have "of_nat m = of_nat (m div n * n + m mod n)"
by simp
finally show ?thesis
by (simp only: of_nat_div of_nat_mult of_nat_add) simp
qed
lemma one_div_two_eq_zero [simp]:
"1 div 2 = 0"
proof -
from of_nat_div [symmetric] have "of_nat 1 div of_nat 2 = of_nat 0"
by (simp only:) simp
then show ?thesis
by simp
qed
lemma one_mod_two_eq_one [simp]:
"1 mod 2 = 1"
proof -
from of_nat_mod [symmetric] have "of_nat 1 mod of_nat 2 = of_nat 1"
by (simp only:) simp
then show ?thesis
by simp
qed
subclass semiring_parity
proof
show "2 dvd a \<longleftrightarrow> a mod 2 = 0" for a
by (fact dvd_eq_mod_eq_0)
show "\<not> 2 dvd a \<longleftrightarrow> a mod 2 = 1" for a
proof
assume "a mod 2 = 1"
then show "\<not> 2 dvd a"
by auto
next
assume "\<not> 2 dvd a"
have eucl: "euclidean_size (a mod 2) = 1"
proof (rule order_antisym)
show "euclidean_size (a mod 2) \<le> 1"
using mod_size_less [of 2 a] by simp
show "1 \<le> euclidean_size (a mod 2)"
using \<open>\<not> 2 dvd a\<close> by (simp add: Suc_le_eq dvd_eq_mod_eq_0)
qed
from \<open>\<not> 2 dvd a\<close> have "\<not> of_nat 2 dvd division_segment a * of_nat (euclidean_size a)"
by simp
then have "\<not> of_nat 2 dvd of_nat (euclidean_size a)"
by (auto simp only: dvd_mult_unit_iff' is_unit_division_segment)
then have "\<not> 2 dvd euclidean_size a"
using of_nat_dvd_iff [of 2] by simp
then have "euclidean_size a mod 2 = 1"
by (simp add: semidom_modulo_class.dvd_eq_mod_eq_0)
then have "of_nat (euclidean_size a mod 2) = of_nat 1"
by simp
then have "of_nat (euclidean_size a) mod 2 = 1"
by (simp add: of_nat_mod)
from \<open>\<not> 2 dvd a\<close> eucl
show "a mod 2 = 1"
by (auto intro: division_segment_eq_iff simp add: division_segment_mod)
qed
show "\<not> is_unit 2"
proof (rule notI)
assume "is_unit 2"
then have "of_nat 2 dvd of_nat 1"
by simp
then have "is_unit (2::nat)"
by (simp only: of_nat_dvd_iff)
then show False
by simp
qed
qed
lemma even_of_nat [simp]:
"even (of_nat a) \<longleftrightarrow> even a"
proof -
have "even (of_nat a) \<longleftrightarrow> of_nat 2 dvd of_nat a"
by simp
also have "\<dots> \<longleftrightarrow> even a"
by (simp only: of_nat_dvd_iff)
finally show ?thesis .
qed
lemma one_mod_2_pow_eq [simp]:
"1 mod (2 ^ n) = of_bool (n > 0)"
proof -
have "1 mod (2 ^ n) = of_nat (1 mod (2 ^ n))"
using of_nat_mod [of 1 "2 ^ n"] by simp
also have "\<dots> = of_bool (n > 0)"
by simp
finally show ?thesis .
qed
lemma one_div_2_pow_eq [simp]:
"1 div (2 ^ n) = of_bool (n = 0)"
using div_mult_mod_eq [of 1 "2 ^ n"] by auto
lemma even_succ_div_two [simp]:
"even a \<Longrightarrow> (a + 1) div 2 = a div 2"
by (cases "a = 0") (auto elim!: evenE dest: mult_not_zero)
lemma odd_succ_div_two [simp]:
"odd a \<Longrightarrow> (a + 1) div 2 = a div 2 + 1"
by (auto elim!: oddE simp add: add.assoc)
lemma even_two_times_div_two:
"even a \<Longrightarrow> 2 * (a div 2) = a"
by (fact dvd_mult_div_cancel)
lemma odd_two_times_div_two_succ [simp]:
"odd a \<Longrightarrow> 2 * (a div 2) + 1 = a"
using mult_div_mod_eq [of 2 a]
by (simp add: even_iff_mod_2_eq_zero)
lemma coprime_left_2_iff_odd [simp]:
"coprime 2 a \<longleftrightarrow> odd a"
proof
assume "odd a"
show "coprime 2 a"
proof (rule coprimeI)
fix b
assume "b dvd 2" "b dvd a"
then have "b dvd a mod 2"
by (auto intro: dvd_mod)
with \<open>odd a\<close> show "is_unit b"
by (simp add: mod_2_eq_odd)
qed
next
assume "coprime 2 a"
show "odd a"
proof (rule notI)
assume "even a"
then obtain b where "a = 2 * b" ..
with \<open>coprime 2 a\<close> have "coprime 2 (2 * b)"
by simp
moreover have "\<not> coprime 2 (2 * b)"
by (rule not_coprimeI [of 2]) simp_all
ultimately show False
by blast
qed
qed
lemma coprime_right_2_iff_odd [simp]:
"coprime a 2 \<longleftrightarrow> odd a"
using coprime_left_2_iff_odd [of a] by (simp add: ac_simps)
lemma div_mult2_eq':
"a div (of_nat m * of_nat n) = a div of_nat m div of_nat n"
proof (cases a "of_nat m * of_nat n" rule: divmod_cases)
case (divides q)
then show ?thesis
using nonzero_mult_div_cancel_right [of "of_nat m" "q * of_nat n"]
by (simp add: ac_simps)
next
case (remainder q r)
then have "division_segment r = 1"
using division_segment_of_nat [of "m * n"] by simp
with division_segment_euclidean_size [of r]
have "of_nat (euclidean_size r) = r"
by simp
have "a mod (of_nat m * of_nat n) div (of_nat m * of_nat n) = 0"
by simp
with remainder(6) have "r div (of_nat m * of_nat n) = 0"
by simp
with \<open>of_nat (euclidean_size r) = r\<close>
have "of_nat (euclidean_size r) div (of_nat m * of_nat n) = 0"
by simp
then have "of_nat (euclidean_size r div (m * n)) = 0"
by (simp add: of_nat_div)
then have "of_nat (euclidean_size r div m div n) = 0"
by (simp add: div_mult2_eq)
with \<open>of_nat (euclidean_size r) = r\<close> have "r div of_nat m div of_nat n = 0"
by (simp add: of_nat_div)
with remainder(1)
have "q = (r div of_nat m + q * of_nat n * of_nat m div of_nat m) div of_nat n"
by simp
with remainder(5) remainder(7) show ?thesis
using div_plus_div_distrib_dvd_right [of "of_nat m" "q * (of_nat m * of_nat n)" r]
by (simp add: ac_simps)
next
case by0
then show ?thesis
by auto
qed
lemma mod_mult2_eq':
"a mod (of_nat m * of_nat n) = of_nat m * (a div of_nat m mod of_nat n) + a mod of_nat m"
proof -
have "a div (of_nat m * of_nat n) * (of_nat m * of_nat n) + a mod (of_nat m * of_nat n) = a div of_nat m div of_nat n * of_nat n * of_nat m + (a div of_nat m mod of_nat n * of_nat m + a mod of_nat m)"
by (simp add: combine_common_factor div_mult_mod_eq)
moreover have "a div of_nat m div of_nat n * of_nat n * of_nat m = of_nat n * of_nat m * (a div of_nat m div of_nat n)"
by (simp add: ac_simps)
ultimately show ?thesis
by (simp add: div_mult2_eq' mult_commute)
qed
lemma div_mult2_numeral_eq:
"a div numeral k div numeral l = a div numeral (k * l)" (is "?A = ?B")
proof -
have "?A = a div of_nat (numeral k) div of_nat (numeral l)"
by simp
also have "\<dots> = a div (of_nat (numeral k) * of_nat (numeral l))"
by (fact div_mult2_eq' [symmetric])
also have "\<dots> = ?B"
by simp
finally show ?thesis .
qed
lemma numeral_Bit0_div_2:
"numeral (num.Bit0 n) div 2 = numeral n"
proof -
have "numeral (num.Bit0 n) = numeral n + numeral n"
by (simp only: numeral.simps)
also have "\<dots> = numeral n * 2"
by (simp add: mult_2_right)
finally have "numeral (num.Bit0 n) div 2 = numeral n * 2 div 2"
by simp
also have "\<dots> = numeral n"
by (rule nonzero_mult_div_cancel_right) simp
finally show ?thesis .
qed
lemma numeral_Bit1_div_2:
"numeral (num.Bit1 n) div 2 = numeral n"
proof -
have "numeral (num.Bit1 n) = numeral n + numeral n + 1"
by (simp only: numeral.simps)
also have "\<dots> = numeral n * 2 + 1"
by (simp add: mult_2_right)
finally have "numeral (num.Bit1 n) div 2 = (numeral n * 2 + 1) div 2"
by simp
also have "\<dots> = numeral n * 2 div 2 + 1 div 2"
using dvd_triv_right by (rule div_plus_div_distrib_dvd_left)
also have "\<dots> = numeral n * 2 div 2"
by simp
also have "\<dots> = numeral n"
by (rule nonzero_mult_div_cancel_right) simp
finally show ?thesis .
qed
end
class unique_euclidean_ring_with_nat = ring + unique_euclidean_semiring_with_nat
begin
subclass ring_parity ..
lemma minus_1_mod_2_eq [simp]:
"- 1 mod 2 = 1"
by (simp add: mod_2_eq_odd)
lemma minus_1_div_2_eq [simp]:
"- 1 div 2 = - 1"
proof -
from div_mult_mod_eq [of "- 1" 2]
have "- 1 div 2 * 2 = - 1 * 2"
using add_implies_diff by fastforce
then show ?thesis
using mult_right_cancel [of 2 "- 1 div 2" "- 1"] by simp
qed
end
subsection \<open>Instance for \<^typ>\<open>nat\<close>\<close>
instance nat :: unique_euclidean_semiring_with_nat
by standard (simp_all add: dvd_eq_mod_eq_0)
lemma even_Suc_Suc_iff [simp]:
"even (Suc (Suc n)) \<longleftrightarrow> even n"
using dvd_add_triv_right_iff [of 2 n] by simp
lemma even_Suc [simp]: "even (Suc n) \<longleftrightarrow> odd n"
using even_plus_one_iff [of n] by simp
lemma even_diff_nat [simp]:
"even (m - n) \<longleftrightarrow> m < n \<or> even (m + n)" for m n :: nat
proof (cases "n \<le> m")
case True
then have "m - n + n * 2 = m + n" by (simp add: mult_2_right)
moreover have "even (m - n) \<longleftrightarrow> even (m - n + n * 2)" by simp
ultimately have "even (m - n) \<longleftrightarrow> even (m + n)" by (simp only:)
then show ?thesis by auto
next
case False
then show ?thesis by simp
qed
lemma odd_pos:
"odd n \<Longrightarrow> 0 < n" for n :: nat
by (auto elim: oddE)
lemma Suc_double_not_eq_double:
"Suc (2 * m) \<noteq> 2 * n"
proof
assume "Suc (2 * m) = 2 * n"
moreover have "odd (Suc (2 * m))" and "even (2 * n)"
by simp_all
ultimately show False by simp
qed
lemma double_not_eq_Suc_double:
"2 * m \<noteq> Suc (2 * n)"
using Suc_double_not_eq_double [of n m] by simp
lemma odd_Suc_minus_one [simp]: "odd n \<Longrightarrow> Suc (n - Suc 0) = n"
by (auto elim: oddE)
lemma even_Suc_div_two [simp]:
"even n \<Longrightarrow> Suc n div 2 = n div 2"
using even_succ_div_two [of n] by simp
lemma odd_Suc_div_two [simp]:
"odd n \<Longrightarrow> Suc n div 2 = Suc (n div 2)"
using odd_succ_div_two [of n] by simp
lemma odd_two_times_div_two_nat [simp]:
assumes "odd n"
shows "2 * (n div 2) = n - (1 :: nat)"
proof -
from assms have "2 * (n div 2) + 1 = n"
by (rule odd_two_times_div_two_succ)
then have "Suc (2 * (n div 2)) - 1 = n - 1"
by simp
then show ?thesis
by simp
qed
lemma not_mod2_eq_Suc_0_eq_0 [simp]:
"n mod 2 \<noteq> Suc 0 \<longleftrightarrow> n mod 2 = 0"
using not_mod_2_eq_1_eq_0 [of n] by simp
lemma odd_card_imp_not_empty:
\<open>A \<noteq> {}\<close> if \<open>odd (card A)\<close>
using that by auto
lemma nat_induct2 [case_names 0 1 step]:
assumes "P 0" "P 1" and step: "\<And>n::nat. P n \<Longrightarrow> P (n + 2)"
shows "P n"
proof (induct n rule: less_induct)
case (less n)
show ?case
proof (cases "n < Suc (Suc 0)")
case True
then show ?thesis
using assms by (auto simp: less_Suc_eq)
next
case False
then obtain k where k: "n = Suc (Suc k)"
by (force simp: not_less nat_le_iff_add)
then have "k<n"
by simp
with less assms have "P (k+2)"
by blast
then show ?thesis
by (simp add: k)
qed
qed
subsection \<open>Parity and powers\<close>
context ring_1
begin
lemma power_minus_even [simp]: "even n \<Longrightarrow> (- a) ^ n = a ^ n"
by (auto elim: evenE)
lemma power_minus_odd [simp]: "odd n \<Longrightarrow> (- a) ^ n = - (a ^ n)"
by (auto elim: oddE)
lemma uminus_power_if:
"(- a) ^ n = (if even n then a ^ n else - (a ^ n))"
by auto
lemma neg_one_even_power [simp]: "even n \<Longrightarrow> (- 1) ^ n = 1"
by simp
lemma neg_one_odd_power [simp]: "odd n \<Longrightarrow> (- 1) ^ n = - 1"
by simp
lemma neg_one_power_add_eq_neg_one_power_diff: "k \<le> n \<Longrightarrow> (- 1) ^ (n + k) = (- 1) ^ (n - k)"
by (cases "even (n + k)") auto
lemma minus_one_power_iff: "(- 1) ^ n = (if even n then 1 else - 1)"
by (induct n) auto
end
context linordered_idom
begin
lemma zero_le_even_power: "even n \<Longrightarrow> 0 \<le> a ^ n"
by (auto elim: evenE)
lemma zero_le_odd_power: "odd n \<Longrightarrow> 0 \<le> a ^ n \<longleftrightarrow> 0 \<le> a"
by (auto simp add: power_even_eq zero_le_mult_iff elim: oddE)
lemma zero_le_power_eq: "0 \<le> a ^ n \<longleftrightarrow> even n \<or> odd n \<and> 0 \<le> a"
by (auto simp add: zero_le_even_power zero_le_odd_power)
lemma zero_less_power_eq: "0 < a ^ n \<longleftrightarrow> n = 0 \<or> even n \<and> a \<noteq> 0 \<or> odd n \<and> 0 < a"
proof -
have [simp]: "0 = a ^ n \<longleftrightarrow> a = 0 \<and> n > 0"
unfolding power_eq_0_iff [of a n, symmetric] by blast
show ?thesis
unfolding less_le zero_le_power_eq by auto
qed
lemma power_less_zero_eq [simp]: "a ^ n < 0 \<longleftrightarrow> odd n \<and> a < 0"
unfolding not_le [symmetric] zero_le_power_eq by auto
lemma power_le_zero_eq: "a ^ n \<le> 0 \<longleftrightarrow> n > 0 \<and> (odd n \<and> a \<le> 0 \<or> even n \<and> a = 0)"
unfolding not_less [symmetric] zero_less_power_eq by auto
lemma power_even_abs: "even n \<Longrightarrow> \<bar>a\<bar> ^ n = a ^ n"
using power_abs [of a n] by (simp add: zero_le_even_power)
lemma power_mono_even:
assumes "even n" and "\<bar>a\<bar> \<le> \<bar>b\<bar>"
shows "a ^ n \<le> b ^ n"
proof -
have "0 \<le> \<bar>a\<bar>" by auto
with \<open>\<bar>a\<bar> \<le> \<bar>b\<bar>\<close> have "\<bar>a\<bar> ^ n \<le> \<bar>b\<bar> ^ n"
by (rule power_mono)
with \<open>even n\<close> show ?thesis
by (simp add: power_even_abs)
qed
lemma power_mono_odd:
assumes "odd n" and "a \<le> b"
shows "a ^ n \<le> b ^ n"
proof (cases "b < 0")
case True
with \<open>a \<le> b\<close> have "- b \<le> - a" and "0 \<le> - b" by auto
then have "(- b) ^ n \<le> (- a) ^ n" by (rule power_mono)
with \<open>odd n\<close> show ?thesis by simp
next
case False
then have "0 \<le> b" by auto
show ?thesis
proof (cases "a < 0")
case True
then have "n \<noteq> 0" and "a \<le> 0" using \<open>odd n\<close> [THEN odd_pos] by auto
then have "a ^ n \<le> 0" unfolding power_le_zero_eq using \<open>odd n\<close> by auto
moreover from \<open>0 \<le> b\<close> have "0 \<le> b ^ n" by auto
ultimately show ?thesis by auto
next
case False
then have "0 \<le> a" by auto
with \<open>a \<le> b\<close> show ?thesis
using power_mono by auto
qed
qed
text \<open>Simplify, when the exponent is a numeral\<close>
lemma zero_le_power_eq_numeral [simp]:
"0 \<le> a ^ numeral w \<longleftrightarrow> even (numeral w :: nat) \<or> odd (numeral w :: nat) \<and> 0 \<le> a"
by (fact zero_le_power_eq)
lemma zero_less_power_eq_numeral [simp]:
"0 < a ^ numeral w \<longleftrightarrow>
numeral w = (0 :: nat) \<or>
even (numeral w :: nat) \<and> a \<noteq> 0 \<or>
odd (numeral w :: nat) \<and> 0 < a"
by (fact zero_less_power_eq)
lemma power_le_zero_eq_numeral [simp]:
"a ^ numeral w \<le> 0 \<longleftrightarrow>
(0 :: nat) < numeral w \<and>
(odd (numeral w :: nat) \<and> a \<le> 0 \<or> even (numeral w :: nat) \<and> a = 0)"
by (fact power_le_zero_eq)
lemma power_less_zero_eq_numeral [simp]:
"a ^ numeral w < 0 \<longleftrightarrow> odd (numeral w :: nat) \<and> a < 0"
by (fact power_less_zero_eq)
lemma power_even_abs_numeral [simp]:
"even (numeral w :: nat) \<Longrightarrow> \<bar>a\<bar> ^ numeral w = a ^ numeral w"
by (fact power_even_abs)
end
subsection \<open>Instance for \<^typ>\<open>int\<close>\<close>
instance int :: unique_euclidean_ring_with_nat
by standard (simp_all add: dvd_eq_mod_eq_0 divide_int_def division_segment_int_def)
lemma even_diff_iff:
"even (k - l) \<longleftrightarrow> even (k + l)" for k l :: int
by (fact even_diff)
lemma even_abs_add_iff:
"even (\<bar>k\<bar> + l) \<longleftrightarrow> even (k + l)" for k l :: int
by simp
lemma even_add_abs_iff:
"even (k + \<bar>l\<bar>) \<longleftrightarrow> even (k + l)" for k l :: int
by simp
lemma even_nat_iff: "0 \<le> k \<Longrightarrow> even (nat k) \<longleftrightarrow> even k"
by (simp add: even_of_nat [of "nat k", where ?'a = int, symmetric])
subsection \<open>Abstract bit shifts\<close>
class semiring_bits = semiring_parity +
assumes bit_split_eq: \<open>\<And>a. of_bool (odd a) + 2 * (a div 2) = a\<close>
and bit_eq_rec: \<open>\<And>a b. a = b \<longleftrightarrow> (even a = even b) \<and> a div 2 = b div 2\<close>
and bit_induct [case_names stable rec]:
\<open>(\<And>a. a div 2 = a \<Longrightarrow> P a)
\<Longrightarrow> (\<And>a b. P a \<Longrightarrow> (of_bool b + 2 * a) div 2 = a \<Longrightarrow> P (of_bool b + 2 * a))
\<Longrightarrow> P a\<close>
lemma nat_bit_induct [case_names zero even odd]:
"P n" if zero: "P 0"
and even: "\<And>n. P n \<Longrightarrow> n > 0 \<Longrightarrow> P (2 * n)"
and odd: "\<And>n. P n \<Longrightarrow> P (Suc (2 * n))"
proof (induction n rule: less_induct)
case (less n)
show "P n"
proof (cases "n = 0")
case True with zero show ?thesis by simp
next
case False
with less have hyp: "P (n div 2)" by simp
show ?thesis
proof (cases "even n")
case True
then have "n \<noteq> 1"
by auto
with \<open>n \<noteq> 0\<close> have "n div 2 > 0"
by simp
with \<open>even n\<close> hyp even [of "n div 2"] show ?thesis
by simp
next
case False
with hyp odd [of "n div 2"] show ?thesis
by simp
qed
qed
qed
instance nat :: semiring_bits
proof
show \<open>of_bool (odd n) + 2 * (n div 2) = n\<close>
for n :: nat
by simp
show \<open>m = n \<longleftrightarrow> (even m \<longleftrightarrow> even n) \<and> m div 2 = n div 2\<close>
for m n :: nat
by (auto dest: odd_two_times_div_two_succ)
show \<open>P n\<close> if stable: \<open>\<And>n. n div 2 = n \<Longrightarrow> P n\<close>
and rec: \<open>\<And>n b. P n \<Longrightarrow> (of_bool b + 2 * n) div 2 = n \<Longrightarrow> P (of_bool b + 2 * n)\<close>
for P and n :: nat
proof (induction n rule: nat_bit_induct)
case zero
from stable [of 0] show ?case
by simp
next
case (even n)
with rec [of n False] show ?case
by simp
next
case (odd n)
with rec [of n True] show ?case
by simp
qed
qed
lemma int_bit_induct [case_names zero minus even odd]:
"P k" if zero_int: "P 0"
and minus_int: "P (- 1)"
and even_int: "\<And>k. P k \<Longrightarrow> k \<noteq> 0 \<Longrightarrow> P (k * 2)"
and odd_int: "\<And>k. P k \<Longrightarrow> k \<noteq> - 1 \<Longrightarrow> P (1 + (k * 2))" for k :: int
proof (cases "k \<ge> 0")
case True
define n where "n = nat k"
with True have "k = int n"
by simp
then show "P k"
proof (induction n arbitrary: k rule: nat_bit_induct)
case zero
then show ?case
by (simp add: zero_int)
next
case (even n)
have "P (int n * 2)"
by (rule even_int) (use even in simp_all)
with even show ?case
by (simp add: ac_simps)
next
case (odd n)
have "P (1 + (int n * 2))"
by (rule odd_int) (use odd in simp_all)
with odd show ?case
by (simp add: ac_simps)
qed
next
case False
define n where "n = nat (- k - 1)"
with False have "k = - int n - 1"
by simp
then show "P k"
proof (induction n arbitrary: k rule: nat_bit_induct)
case zero
then show ?case
by (simp add: minus_int)
next
case (even n)
have "P (1 + (- int (Suc n) * 2))"
by (rule odd_int) (use even in \<open>simp_all add: algebra_simps\<close>)
also have "\<dots> = - int (2 * n) - 1"
by (simp add: algebra_simps)
finally show ?case
using even by simp
next
case (odd n)
have "P (- int (Suc n) * 2)"
by (rule even_int) (use odd in \<open>simp_all add: algebra_simps\<close>)
also have "\<dots> = - int (Suc (2 * n)) - 1"
by (simp add: algebra_simps)
finally show ?case
using odd by simp
qed
qed
instance int :: semiring_bits
proof
show \<open>of_bool (odd k) + 2 * (k div 2) = k\<close>
for k :: int
by (auto elim: oddE)
show \<open>k = l \<longleftrightarrow> (even k \<longleftrightarrow> even l) \<and> k div 2 = l div 2\<close>
for k l :: int
by (auto dest: odd_two_times_div_two_succ)
show \<open>P k\<close> if stable: \<open>\<And>k. k div 2 = k \<Longrightarrow> P k\<close>
and rec: \<open>\<And>k b. P k \<Longrightarrow> (of_bool b + 2 * k) div 2 = k \<Longrightarrow> P (of_bool b + 2 * k)\<close>
for P and k :: int
proof (induction k rule: int_bit_induct)
case zero
from stable [of 0] show ?case
by simp
next
case minus
from stable [of \<open>- 1\<close>] show ?case
by simp
next
case (even k)
with rec [of k False] show ?case
by (simp add: ac_simps)
next
case (odd k)
with rec [of k True] show ?case
by (simp add: ac_simps)
qed
qed
class semiring_bit_shifts = semiring_bits +
fixes push_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
assumes push_bit_eq_mult: \<open>push_bit n a = a * 2 ^ n\<close>
fixes drop_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
assumes drop_bit_eq_div: \<open>drop_bit n a = a div 2 ^ n\<close>
begin
definition take_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
where take_bit_eq_mod: \<open>take_bit n a = a mod 2 ^ n\<close>
text \<open>
Logically, \<^const>\<open>push_bit\<close>,
\<^const>\<open>drop_bit\<close> and \<^const>\<open>take_bit\<close> are just aliases; having them
as separate operations makes proofs easier, otherwise proof automation
would fiddle with concrete expressions \<^term>\<open>2 ^ n\<close> in a way obfuscating the basic
algebraic relationships between those operations.
Having
\<^const>\<open>push_bit\<close> and \<^const>\<open>drop_bit\<close> as definitional class operations
takes into account that specific instances of these can be implemented
differently wrt. code generation.
\<close>
end
instantiation nat :: semiring_bit_shifts
begin
definition push_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
where \<open>push_bit_nat n m = m * 2 ^ n\<close>
definition drop_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
where \<open>drop_bit_nat n m = m div 2 ^ n\<close>
instance proof
show \<open>push_bit n m = m * 2 ^ n\<close> for n m :: nat
by (simp add: push_bit_nat_def)
show \<open>drop_bit n m = m div 2 ^ n\<close> for n m :: nat
by (simp add: drop_bit_nat_def)
qed
end
instantiation int :: semiring_bit_shifts
begin
definition push_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
where \<open>push_bit_int n k = k * 2 ^ n\<close>
definition drop_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
where \<open>drop_bit_int n k = k div 2 ^ n\<close>
instance proof
show \<open>push_bit n k = k * 2 ^ n\<close> for n :: nat and k :: int
by (simp add: push_bit_int_def)
show \<open>drop_bit n k = k div 2 ^ n\<close> for n :: nat and k :: int
by (simp add: drop_bit_int_def)
qed
end
class unique_euclidean_semiring_with_bit_shifts =
unique_euclidean_semiring_with_nat + semiring_bit_shifts
begin
lemma bit_ident:
"push_bit n (drop_bit n a) + take_bit n a = a"
using div_mult_mod_eq by (simp add: push_bit_eq_mult take_bit_eq_mod drop_bit_eq_div)
lemma push_bit_push_bit [simp]:
"push_bit m (push_bit n a) = push_bit (m + n) a"
by (simp add: push_bit_eq_mult power_add ac_simps)
lemma take_bit_take_bit [simp]:
"take_bit m (take_bit n a) = take_bit (min m n) a"
proof (cases "m \<le> n")
case True
then show ?thesis
by (simp add: take_bit_eq_mod not_le min_def mod_mod_cancel le_imp_power_dvd)
next
case False
then have "n < m" and "min m n = n"
by simp_all
then have "2 ^ m = of_nat (2 ^ n) * of_nat (2 ^ (m - n))"
by (simp add: power_add [symmetric])
then have "a mod 2 ^ n mod 2 ^ m = a mod 2 ^ n mod (of_nat (2 ^ n) * of_nat (2 ^ (m - n)))"
by simp
also have "\<dots> = of_nat (2 ^ n) * (a mod 2 ^ n div of_nat (2 ^ n) mod of_nat (2 ^ (m - n))) + a mod 2 ^ n mod of_nat (2 ^ n)"
by (simp only: mod_mult2_eq')
finally show ?thesis
using \<open>min m n = n\<close> by (simp add: take_bit_eq_mod)
qed
lemma drop_bit_drop_bit [simp]:
"drop_bit m (drop_bit n a) = drop_bit (m + n) a"
proof -
have "a div (2 ^ m * 2 ^ n) = a div (of_nat (2 ^ n) * of_nat (2 ^ m))"
by (simp add: ac_simps)
also have "\<dots> = a div of_nat (2 ^ n) div of_nat (2 ^ m)"
by (simp only: div_mult2_eq')
finally show ?thesis
by (simp add: drop_bit_eq_div power_add)
qed
lemma push_bit_take_bit:
"push_bit m (take_bit n a) = take_bit (m + n) (push_bit m a)"
by (simp add: push_bit_eq_mult take_bit_eq_mod power_add mult_mod_right ac_simps)
lemma take_bit_push_bit:
"take_bit m (push_bit n a) = push_bit n (take_bit (m - n) a)"
proof (cases "m \<le> n")
case True
then show ?thesis
by (simp_all add: push_bit_eq_mult take_bit_eq_mod mod_eq_0_iff_dvd dvd_power_le)
next
case False
then show ?thesis
using push_bit_take_bit [of n "m - n" a]
by simp
qed
lemma take_bit_drop_bit:
"take_bit m (drop_bit n a) = drop_bit n (take_bit (m + n) a)"
using mod_mult2_eq' [of a "2 ^ n" "2 ^ m"]
by (simp add: drop_bit_eq_div take_bit_eq_mod power_add ac_simps)
lemma drop_bit_take_bit:
"drop_bit m (take_bit n a) = take_bit (n - m) (drop_bit m a)"
proof (cases "m \<le> n")
case True
then show ?thesis
using take_bit_drop_bit [of "n - m" m a] by simp
next
case False
then have "a mod 2 ^ n div 2 ^ m = a mod 2 ^ n div 2 ^ (n + (m - n))"
by simp
also have "\<dots> = a mod 2 ^ n div (2 ^ n * 2 ^ (m - n))"
by (simp add: power_add)
also have "\<dots> = a mod 2 ^ n div (of_nat (2 ^ n) * of_nat (2 ^ (m - n)))"
by simp
also have "\<dots> = a mod 2 ^ n div of_nat (2 ^ n) div of_nat (2 ^ (m - n))"
by (simp only: div_mult2_eq')
finally show ?thesis
using False by (simp add: take_bit_eq_mod drop_bit_eq_div)
qed
lemma push_bit_0_id [simp]:
"push_bit 0 = id"
by (simp add: fun_eq_iff push_bit_eq_mult)
lemma push_bit_of_0 [simp]:
"push_bit n 0 = 0"
by (simp add: push_bit_eq_mult)
lemma push_bit_of_1:
"push_bit n 1 = 2 ^ n"
by (simp add: push_bit_eq_mult)
lemma push_bit_Suc [simp]:
"push_bit (Suc n) a = push_bit n (a * 2)"
by (simp add: push_bit_eq_mult ac_simps)
lemma push_bit_double:
"push_bit n (a * 2) = push_bit n a * 2"
by (simp add: push_bit_eq_mult ac_simps)
lemma push_bit_eq_0_iff [simp]:
"push_bit n a = 0 \<longleftrightarrow> a = 0"
by (simp add: push_bit_eq_mult)
lemma push_bit_add:
"push_bit n (a + b) = push_bit n a + push_bit n b"
by (simp add: push_bit_eq_mult algebra_simps)
lemma push_bit_numeral [simp]:
"push_bit (numeral l) (numeral k) = push_bit (pred_numeral l) (numeral (Num.Bit0 k))"
by (simp only: numeral_eq_Suc power_Suc numeral_Bit0 [of k] mult_2 [symmetric]) (simp add: ac_simps)
lemma push_bit_of_nat:
"push_bit n (of_nat m) = of_nat (push_bit n m)"
by (simp add: push_bit_eq_mult Parity.push_bit_eq_mult)
lemma take_bit_0 [simp]:
"take_bit 0 a = 0"
by (simp add: take_bit_eq_mod)
lemma take_bit_Suc [simp]:
"take_bit (Suc n) a = take_bit n (a div 2) * 2 + of_bool (odd a)"
proof -
have "1 + 2 * (a div 2) mod (2 * 2 ^ n) = (a div 2 * 2 + a mod 2) mod (2 * 2 ^ n)"
if "odd a"
using that mod_mult2_eq' [of "1 + 2 * (a div 2)" 2 "2 ^ n"]
by (simp add: ac_simps odd_iff_mod_2_eq_one mult_mod_right)
also have "\<dots> = a mod (2 * 2 ^ n)"
by (simp only: div_mult_mod_eq)
finally show ?thesis
by (simp add: take_bit_eq_mod algebra_simps mult_mod_right)
qed
lemma take_bit_of_0 [simp]:
"take_bit n 0 = 0"
by (simp add: take_bit_eq_mod)
lemma take_bit_of_1 [simp]:
"take_bit n 1 = of_bool (n > 0)"
by (simp add: take_bit_eq_mod)
lemma take_bit_add:
"take_bit n (take_bit n a + take_bit n b) = take_bit n (a + b)"
by (simp add: take_bit_eq_mod mod_simps)
lemma take_bit_eq_0_iff:
"take_bit n a = 0 \<longleftrightarrow> 2 ^ n dvd a"
by (simp add: take_bit_eq_mod mod_eq_0_iff_dvd)
lemma take_bit_of_1_eq_0_iff [simp]:
"take_bit n 1 = 0 \<longleftrightarrow> n = 0"
by (simp add: take_bit_eq_mod)
lemma even_take_bit_eq [simp]:
"even (take_bit n a) \<longleftrightarrow> n = 0 \<or> even a"
by (cases n) (simp_all add: take_bit_eq_mod dvd_mod_iff)
lemma take_bit_numeral_bit0 [simp]:
"take_bit (numeral l) (numeral (Num.Bit0 k)) = take_bit (pred_numeral l) (numeral k) * 2"
by (simp only: numeral_eq_Suc power_Suc numeral_Bit0 [of k] mult_2 [symmetric] take_bit_Suc
ac_simps even_mult_iff nonzero_mult_div_cancel_right [OF numeral_neq_zero]) simp
lemma take_bit_numeral_bit1 [simp]:
"take_bit (numeral l) (numeral (Num.Bit1 k)) = take_bit (pred_numeral l) (numeral k) * 2 + 1"
by (simp only: numeral_eq_Suc power_Suc numeral_Bit1 [of k] mult_2 [symmetric] take_bit_Suc
ac_simps even_add even_mult_iff div_mult_self1 [OF numeral_neq_zero]) (simp add: ac_simps)
lemma take_bit_of_nat:
"take_bit n (of_nat m) = of_nat (take_bit n m)"
by (simp add: take_bit_eq_mod Parity.take_bit_eq_mod of_nat_mod [of m "2 ^ n"])
lemma drop_bit_0 [simp]:
"drop_bit 0 = id"
by (simp add: fun_eq_iff drop_bit_eq_div)
lemma drop_bit_of_0 [simp]:
"drop_bit n 0 = 0"
by (simp add: drop_bit_eq_div)
lemma drop_bit_of_1 [simp]:
"drop_bit n 1 = of_bool (n = 0)"
by (simp add: drop_bit_eq_div)
lemma drop_bit_Suc [simp]:
"drop_bit (Suc n) a = drop_bit n (a div 2)"
proof (cases "even a")
case True
then obtain b where "a = 2 * b" ..
moreover have "drop_bit (Suc n) (2 * b) = drop_bit n b"
by (simp add: drop_bit_eq_div)
ultimately show ?thesis
by simp
next
case False
then obtain b where "a = 2 * b + 1" ..
moreover have "drop_bit (Suc n) (2 * b + 1) = drop_bit n b"
using div_mult2_eq' [of "1 + b * 2" 2 "2 ^ n"]
by (auto simp add: drop_bit_eq_div ac_simps)
ultimately show ?thesis
by simp
qed
lemma drop_bit_half:
"drop_bit n (a div 2) = drop_bit n a div 2"
by (induction n arbitrary: a) simp_all
lemma drop_bit_of_bool [simp]:
"drop_bit n (of_bool d) = of_bool (n = 0 \<and> d)"
by (cases n) simp_all
lemma drop_bit_numeral_bit0 [simp]:
"drop_bit (numeral l) (numeral (Num.Bit0 k)) = drop_bit (pred_numeral l) (numeral k)"
by (simp only: numeral_eq_Suc power_Suc numeral_Bit0 [of k] mult_2 [symmetric] drop_bit_Suc
nonzero_mult_div_cancel_left [OF numeral_neq_zero])
lemma drop_bit_numeral_bit1 [simp]:
"drop_bit (numeral l) (numeral (Num.Bit1 k)) = drop_bit (pred_numeral l) (numeral k)"
by (simp only: numeral_eq_Suc power_Suc numeral_Bit1 [of k] mult_2 [symmetric] drop_bit_Suc
div_mult_self4 [OF numeral_neq_zero]) simp
lemma drop_bit_of_nat:
"drop_bit n (of_nat m) = of_nat (drop_bit n m)"
by (simp add: drop_bit_eq_div Parity.drop_bit_eq_div of_nat_div [of m "2 ^ n"])
end
instance nat :: unique_euclidean_semiring_with_bit_shifts ..
instance int :: unique_euclidean_semiring_with_bit_shifts ..
lemma push_bit_of_Suc_0 [simp]:
"push_bit n (Suc 0) = 2 ^ n"
using push_bit_of_1 [where ?'a = nat] by simp
lemma take_bit_of_Suc_0 [simp]:
"take_bit n (Suc 0) = of_bool (0 < n)"
using take_bit_of_1 [where ?'a = nat] by simp
lemma drop_bit_of_Suc_0 [simp]:
"drop_bit n (Suc 0) = of_bool (n = 0)"
using drop_bit_of_1 [where ?'a = nat] by simp
lemma take_bit_eq_self:
\<open>take_bit n m = m\<close> if \<open>m < 2 ^ n\<close> for n m :: nat
using that by (simp add: take_bit_eq_mod)
lemma push_bit_minus_one:
"push_bit n (- 1 :: int) = - (2 ^ n)"
by (simp add: push_bit_eq_mult)
end