(* Title: CCL/Hered.thy
Author: Martin Coen
Copyright 1993 University of Cambridge
*)
section \<open>Hereditary Termination -- cf. Martin Lo\"f\<close>
theory Hered
imports Type
begin
text \<open>
Note that this is based on an untyped equality and so \<open>lam
x. b(x)\<close> is only hereditarily terminating if \<open>ALL x. b(x)\<close>
is. Not so useful for functions!
\<close>
definition HTTgen :: "i set \<Rightarrow> i set" where
"HTTgen(R) ==
{t. t=true | t=false | (EX a b. t= <a, b> \<and> a : R \<and> b : R) |
(EX f. t = lam x. f(x) \<and> (ALL x. f(x) : R))}"
definition HTT :: "i set"
where "HTT == gfp(HTTgen)"
subsection \<open>Hereditary Termination\<close>
lemma HTTgen_mono: "mono(\<lambda>X. HTTgen(X))"
apply (unfold HTTgen_def)
apply (rule monoI)
apply blast
done
lemma HTTgenXH:
"t : HTTgen(A) \<longleftrightarrow> t=true | t=false | (EX a b. t=<a,b> \<and> a : A \<and> b : A) |
(EX f. t=lam x. f(x) \<and> (ALL x. f(x) : A))"
apply (unfold HTTgen_def)
apply blast
done
lemma HTTXH:
"t : HTT \<longleftrightarrow> t=true | t=false | (EX a b. t=<a,b> \<and> a : HTT \<and> b : HTT) |
(EX f. t=lam x. f(x) \<and> (ALL x. f(x) : HTT))"
apply (rule HTTgen_mono [THEN HTT_def [THEN def_gfp_Tarski], THEN XHlemma1, unfolded HTTgen_def])
apply blast
done
subsection \<open>Introduction Rules for HTT\<close>
lemma HTT_bot: "\<not> bot : HTT"
by (blast dest: HTTXH [THEN iffD1])
lemma HTT_true: "true : HTT"
by (blast intro: HTTXH [THEN iffD2])
lemma HTT_false: "false : HTT"
by (blast intro: HTTXH [THEN iffD2])
lemma HTT_pair: "<a,b> : HTT \<longleftrightarrow> a : HTT \<and> b : HTT"
apply (rule HTTXH [THEN iff_trans])
apply blast
done
lemma HTT_lam: "lam x. f(x) : HTT \<longleftrightarrow> (ALL x. f(x) : HTT)"
apply (rule HTTXH [THEN iff_trans])
apply auto
done
lemmas HTT_rews1 = HTT_bot HTT_true HTT_false HTT_pair HTT_lam
lemma HTT_rews2:
"one : HTT"
"inl(a) : HTT \<longleftrightarrow> a : HTT"
"inr(b) : HTT \<longleftrightarrow> b : HTT"
"zero : HTT"
"succ(n) : HTT \<longleftrightarrow> n : HTT"
"[] : HTT"
"x$xs : HTT \<longleftrightarrow> x : HTT \<and> xs : HTT"
by (simp_all add: data_defs HTT_rews1)
lemmas HTT_rews = HTT_rews1 HTT_rews2
subsection \<open>Coinduction for HTT\<close>
lemma HTT_coinduct: "\<lbrakk>t : R; R <= HTTgen(R)\<rbrakk> \<Longrightarrow> t : HTT"
apply (erule HTT_def [THEN def_coinduct])
apply assumption
done
lemma HTT_coinduct3: "\<lbrakk>t : R; R <= HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))\<rbrakk> \<Longrightarrow> t : HTT"
apply (erule HTTgen_mono [THEN [3] HTT_def [THEN def_coinduct3]])
apply assumption
done
lemma HTTgenIs:
"true : HTTgen(R)"
"false : HTTgen(R)"
"\<lbrakk>a : R; b : R\<rbrakk> \<Longrightarrow> <a,b> : HTTgen(R)"
"\<And>b. (\<And>x. b(x) : R) \<Longrightarrow> lam x. b(x) : HTTgen(R)"
"one : HTTgen(R)"
"a : lfp(\<lambda>x. HTTgen(x) Un R Un HTT) \<Longrightarrow> inl(a) : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))"
"b : lfp(\<lambda>x. HTTgen(x) Un R Un HTT) \<Longrightarrow> inr(b) : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))"
"zero : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))"
"n : lfp(\<lambda>x. HTTgen(x) Un R Un HTT) \<Longrightarrow> succ(n) : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))"
"[] : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))"
"\<lbrakk>h : lfp(\<lambda>x. HTTgen(x) Un R Un HTT); t : lfp(\<lambda>x. HTTgen(x) Un R Un HTT)\<rbrakk> \<Longrightarrow>
h$t : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))"
unfolding data_defs by (genIs HTTgenXH HTTgen_mono)+
subsection \<open>Formation Rules for Types\<close>
lemma UnitF: "Unit <= HTT"
by (simp add: subsetXH UnitXH HTT_rews)
lemma BoolF: "Bool <= HTT"
by (fastforce simp: subsetXH BoolXH iff: HTT_rews)
lemma PlusF: "\<lbrakk>A <= HTT; B <= HTT\<rbrakk> \<Longrightarrow> A + B <= HTT"
by (fastforce simp: subsetXH PlusXH iff: HTT_rews)
lemma SigmaF: "\<lbrakk>A <= HTT; \<And>x. x:A \<Longrightarrow> B(x) <= HTT\<rbrakk> \<Longrightarrow> SUM x:A. B(x) <= HTT"
by (fastforce simp: subsetXH SgXH HTT_rews)
(*** Formation Rules for Recursive types - using coinduction these only need ***)
(*** exhaution rule for type-former ***)
(*Proof by induction - needs induction rule for type*)
lemma "Nat <= HTT"
apply (simp add: subsetXH)
apply clarify
apply (erule Nat_ind)
apply (fastforce iff: HTT_rews)+
done
lemma NatF: "Nat <= HTT"
apply clarify
apply (erule HTT_coinduct3)
apply (fast intro: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] dest: NatXH [THEN iffD1])
done
lemma ListF: "A <= HTT \<Longrightarrow> List(A) <= HTT"
apply clarify
apply (erule HTT_coinduct3)
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
subsetD [THEN HTTgen_mono [THEN ci3_AI]]
dest: ListXH [THEN iffD1])
done
lemma ListsF: "A <= HTT \<Longrightarrow> Lists(A) <= HTT"
apply clarify
apply (erule HTT_coinduct3)
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: ListsXH [THEN iffD1])
done
lemma IListsF: "A <= HTT \<Longrightarrow> ILists(A) <= HTT"
apply clarify
apply (erule HTT_coinduct3)
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: IListsXH [THEN iffD1])
done
end