%% $Id$\chapter{Zermelo-Fraenkel Set Theory}\index{set theory|(}The theory~\thydx{ZF} implements Zermelo-Fraenkel settheory~\cite{halmos60,suppes72} as an extension of~\texttt{FOL}, classicalfirst-order logic. The theory includes a collection of derived naturaldeduction rules, for use with Isabelle's classical reasoner. Muchof it is based on the work of No\"el~\cite{noel}.A tremendous amount of set theory has been formally developed, including thebasic properties of relations, functions, ordinals and cardinals. Significantresults have been proved, such as the Schr\"oder-Bernstein Theorem, theWellordering Theorem and a version of Ramsey's Theorem. \texttt{ZF} providesboth the integers and the natural numbers. General methods have beendeveloped for solving recursion equations over monotonic functors; these havebeen applied to yield constructions of lists, trees, infinite lists, etc.\texttt{ZF} has a flexible package for handling inductive definitions,such as inference systems, and datatype definitions, such as lists andtrees. Moreover it handles coinductive definitions, such asbisimulation relations, and codatatype definitions, such as streams. Itprovides a streamlined syntax for defining primitive recursive functions overdatatypes. Because ZF is an extension of FOL, it provides the same packages, namely\texttt{hyp_subst_tac}, the simplifier, and the classical reasoner. Thedefault simpset and claset are usually satisfactory.Published articles~\cite{paulson-set-I,paulson-set-II} describe \texttt{ZF}less formally than this chapter. Isabelle employs a novel treatment ofnon-well-founded data structures within the standard {\sc zf} axioms includingthe Axiom of Foundation~\cite{paulson-mscs}.\section{Which version of axiomatic set theory?}The two main axiom systems for set theory are Bernays-G\"odel~({\sc bg})and Zermelo-Fraenkel~({\sc zf}). Resolution theorem provers can use {\sc bg} because it is finite~\cite{boyer86,quaife92}. {\sc zf} does nothave a finite axiom system because of its Axiom Scheme of Replacement.This makes it awkward to use with many theorem provers, since instancesof the axiom scheme have to be invoked explicitly. Since Isabelle has nodifficulty with axiom schemes, we may adopt either axiom system.These two theories differ in their treatment of {\bf classes}, which arecollections that are `too big' to be sets. The class of all sets,~$V$,cannot be a set without admitting Russell's Paradox. In {\sc bg}, bothclasses and sets are individuals; $x\in V$ expresses that $x$ is a set. In{\sc zf}, all variables denote sets; classes are identified with unarypredicates. The two systems define essentially the same sets and classes,with similar properties. In particular, a class cannot belong to anotherclass (let alone a set).Modern set theorists tend to prefer {\sc zf} because they are mainly concernedwith sets, rather than classes. {\sc bg} requires tiresome proofs that variouscollections are sets; for instance, showing $x\in\{x\}$ requires showing that$x$ is a set.\begin{figure} \small\begin{center}\begin{tabular}{rrr} \it name &\it meta-type & \it description \\ \cdx{Let} & $[\alpha,\alpha\To\beta]\To\beta$ & let binder\\ \cdx{0} & $i$ & empty set\\ \cdx{cons} & $[i,i]\To i$ & finite set constructor\\ \cdx{Upair} & $[i,i]\To i$ & unordered pairing\\ \cdx{Pair} & $[i,i]\To i$ & ordered pairing\\ \cdx{Inf} & $i$ & infinite set\\ \cdx{Pow} & $i\To i$ & powerset\\ \cdx{Union} \cdx{Inter} & $i\To i$ & set union/intersection \\ \cdx{split} & $[[i,i]\To i, i] \To i$ & generalized projection\\ \cdx{fst} \cdx{snd} & $i\To i$ & projections\\ \cdx{converse}& $i\To i$ & converse of a relation\\ \cdx{succ} & $i\To i$ & successor\\ \cdx{Collect} & $[i,i\To o]\To i$ & separation\\ \cdx{Replace} & $[i, [i,i]\To o] \To i$ & replacement\\ \cdx{PrimReplace} & $[i, [i,i]\To o] \To i$ & primitive replacement\\ \cdx{RepFun} & $[i, i\To i] \To i$ & functional replacement\\ \cdx{Pi} \cdx{Sigma} & $[i,i\To i]\To i$ & general product/sum\\ \cdx{domain} & $i\To i$ & domain of a relation\\ \cdx{range} & $i\To i$ & range of a relation\\ \cdx{field} & $i\To i$ & field of a relation\\ \cdx{Lambda} & $[i, i\To i]\To i$ & $\lambda$-abstraction\\ \cdx{restrict}& $[i, i] \To i$ & restriction of a function\\ \cdx{The} & $[i\To o]\To i$ & definite description\\ \cdx{if} & $[o,i,i]\To i$ & conditional\\ \cdx{Ball} \cdx{Bex} & $[i, i\To o]\To o$ & bounded quantifiers\end{tabular}\end{center}\subcaption{Constants}\begin{center}\index{*"`"` symbol}\index{*"-"`"` symbol}\index{*"` symbol}\index{function applications}\index{*"- symbol}\index{*": symbol}\index{*"<"= symbol}\begin{tabular}{rrrr} \it symbol & \it meta-type & \it priority & \it description \\ \tt `` & $[i,i]\To i$ & Left 90 & image \\ \tt -`` & $[i,i]\To i$ & Left 90 & inverse image \\ \tt ` & $[i,i]\To i$ & Left 90 & application \\ \sdx{Int} & $[i,i]\To i$ & Left 70 & intersection ($\int$) \\ \sdx{Un} & $[i,i]\To i$ & Left 65 & union ($\un$) \\ \tt - & $[i,i]\To i$ & Left 65 & set difference ($-$) \\[1ex] \tt: & $[i,i]\To o$ & Left 50 & membership ($\in$) \\ \tt <= & $[i,i]\To o$ & Left 50 & subset ($\subseteq$) \end{tabular}\end{center}\subcaption{Infixes}\caption{Constants of ZF} \label{zf-constants}\end{figure} \section{The syntax of set theory}The language of set theory, as studied by logicians, has no constants. Thetraditional axioms merely assert the existence of empty sets, unions,powersets, etc.; this would be intolerable for practical reasoning. TheIsabelle theory declares constants for primitive sets. It also extends\texttt{FOL} with additional syntax for finite sets, ordered pairs,comprehension, general union/intersection, general sums/products, andbounded quantifiers. In most other respects, Isabelle implements preciselyZermelo-Fraenkel set theory.Figure~\ref{zf-constants} lists the constants and infixes of~ZF, whileFigure~\ref{zf-trans} presents the syntax translations. Finally,Figure~\ref{zf-syntax} presents the full grammar for set theory, including theconstructs of FOL.Local abbreviations can be introduced by a \texttt{let} construct whosesyntax appears in Fig.\ts\ref{zf-syntax}. Internally it is translated intothe constant~\cdx{Let}. It can be expanded by rewriting with itsdefinition, \tdx{Let_def}.Apart from \texttt{let}, set theory does not use polymorphism. All terms inZF have type~\tydx{i}, which is the type of individuals and has class~{\tt term}. The type of first-order formulae, remember, is~\textit{o}.Infix operators include binary union and intersection ($A\un B$ and$A\int B$), set difference ($A-B$), and the subset and membershiprelations. Note that $a$\verb|~:|$b$ is translated to $\neg(a\in b)$. Theunion and intersection operators ($\bigcup A$ and $\bigcap A$) form theunion or intersection of a set of sets; $\bigcup A$ means the same as$\bigcup@{x\in A}x$. Of these operators, only $\bigcup A$ is primitive.The constant \cdx{Upair} constructs unordered pairs; thus {\tt Upair($A$,$B$)} denotes the set~$\{A,B\}$ and \texttt{Upair($A$,$A$)}denotes the singleton~$\{A\}$. General union is used to define binaryunion. The Isabelle version goes on to define the constant\cdx{cons}:\begin{eqnarray*} A\cup B & \equiv & \bigcup(\texttt{Upair}(A,B)) \\ \texttt{cons}(a,B) & \equiv & \texttt{Upair}(a,a) \un B\end{eqnarray*}The $\{a@1, \ldots\}$ notation abbreviates finite sets constructed in theobvious manner using~\texttt{cons} and~$\emptyset$ (the empty set):\begin{eqnarray*} \{a,b,c\} & \equiv & \texttt{cons}(a,\texttt{cons}(b,\texttt{cons}(c,\emptyset)))\end{eqnarray*}The constant \cdx{Pair} constructs ordered pairs, as in {\ttPair($a$,$b$)}. Ordered pairs may also be written within angle brackets,as {\tt<$a$,$b$>}. The $n$-tuple {\tt<$a@1$,\ldots,$a@{n-1}$,$a@n$>}abbreviates the nest of pairs\par\nobreak\centerline{\texttt{Pair($a@1$,\ldots,Pair($a@{n-1}$,$a@n$)\ldots).}}In ZF, a function is a set of pairs. A ZF function~$f$ is simply anindividual as far as Isabelle is concerned: its Isabelle type is~$i$, not say$i\To i$. The infix operator~{\tt`} denotes the application of a function setto its argument; we must write~$f{\tt`}x$, not~$f(x)$. The syntax for imageis~$f{\tt``}A$ and that for inverse image is~$f{\tt-``}A$.\begin{figure} \index{lambda abs@$\lambda$-abstractions}\index{*"-"> symbol}\index{*"* symbol}\begin{center} \footnotesize\tt\frenchspacing\begin{tabular}{rrr} \it external & \it internal & \it description \\ $a$ \ttilde: $b$ & \ttilde($a$ : $b$) & \rm negated membership\\ \ttlbrace$a@1$, $\ldots$, $a@n$\ttrbrace & cons($a@1$,$\ldots$,cons($a@n$,0)) & \rm finite set \\ <$a@1$, $\ldots$, $a@{n-1}$, $a@n$> & Pair($a@1$,\ldots,Pair($a@{n-1}$,$a@n$)\ldots) & \rm ordered $n$-tuple \\ \ttlbrace$x$:$A . P[x]$\ttrbrace & Collect($A$,$\lambda x. P[x]$) & \rm separation \\ \ttlbrace$y . x$:$A$, $Q[x,y]$\ttrbrace & Replace($A$,$\lambda x\,y. Q[x,y]$) & \rm replacement \\ \ttlbrace$b[x] . x$:$A$\ttrbrace & RepFun($A$,$\lambda x. b[x]$) & \rm functional replacement \\ \sdx{INT} $x$:$A . B[x]$ & Inter(\ttlbrace$B[x] . x$:$A$\ttrbrace) & \rm general intersection \\ \sdx{UN} $x$:$A . B[x]$ & Union(\ttlbrace$B[x] . x$:$A$\ttrbrace) & \rm general union \\ \sdx{PROD} $x$:$A . B[x]$ & Pi($A$,$\lambda x. B[x]$) & \rm general product \\ \sdx{SUM} $x$:$A . B[x]$ & Sigma($A$,$\lambda x. B[x]$) & \rm general sum \\ $A$ -> $B$ & Pi($A$,$\lambda x. B$) & \rm function space \\ $A$ * $B$ & Sigma($A$,$\lambda x. B$) & \rm binary product \\ \sdx{THE} $x . P[x]$ & The($\lambda x. P[x]$) & \rm definite description \\ \sdx{lam} $x$:$A . b[x]$ & Lambda($A$,$\lambda x. b[x]$) & \rm $\lambda$-abstraction\\[1ex] \sdx{ALL} $x$:$A . P[x]$ & Ball($A$,$\lambda x. P[x]$) & \rm bounded $\forall$ \\ \sdx{EX} $x$:$A . P[x]$ & Bex($A$,$\lambda x. P[x]$) & \rm bounded $\exists$\end{tabular}\end{center}\caption{Translations for ZF} \label{zf-trans}\end{figure} \begin{figure} \index{*let symbol}\index{*in symbol}\dquotes\[\begin{array}{rcl} term & = & \hbox{expression of type~$i$} \\ & | & "let"~id~"="~term";"\dots";"~id~"="~term~"in"~term \\ & | & "if"~term~"then"~term~"else"~term \\ & | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\ & | & "< " term\; ("," term)^* " >" \\ & | & "{\ttlbrace} " id ":" term " . " formula " {\ttrbrace}" \\ & | & "{\ttlbrace} " id " . " id ":" term ", " formula " {\ttrbrace}" \\ & | & "{\ttlbrace} " term " . " id ":" term " {\ttrbrace}" \\ & | & term " `` " term \\ & | & term " -`` " term \\ & | & term " ` " term \\ & | & term " * " term \\ & | & term " Int " term \\ & | & term " Un " term \\ & | & term " - " term \\ & | & term " -> " term \\ & | & "THE~~" id " . " formula\\ & | & "lam~~" id ":" term " . " term \\ & | & "INT~~" id ":" term " . " term \\ & | & "UN~~~" id ":" term " . " term \\ & | & "PROD~" id ":" term " . " term \\ & | & "SUM~~" id ":" term " . " term \\[2ex] formula & = & \hbox{expression of type~$o$} \\ & | & term " : " term \\ & | & term " \ttilde: " term \\ & | & term " <= " term \\ & | & term " = " term \\ & | & term " \ttilde= " term \\ & | & "\ttilde\ " formula \\ & | & formula " \& " formula \\ & | & formula " | " formula \\ & | & formula " --> " formula \\ & | & formula " <-> " formula \\ & | & "ALL " id ":" term " . " formula \\ & | & "EX~~" id ":" term " . " formula \\ & | & "ALL~" id~id^* " . " formula \\ & | & "EX~~" id~id^* " . " formula \\ & | & "EX!~" id~id^* " . " formula \end{array}\]\caption{Full grammar for ZF} \label{zf-syntax}\end{figure} \section{Binding operators}The constant \cdx{Collect} constructs sets by the principle of {\bf separation}. The syntax for separation is\hbox{\tt\ttlbrace$x$:$A$.\ $P[x]$\ttrbrace}, where $P[x]$ is a formulathat may contain free occurrences of~$x$. It abbreviates the set {\tt Collect($A$,$\lambda x. P[x]$)}, which consists of all $x\in A$ thatsatisfy~$P[x]$. Note that \texttt{Collect} is an unfortunate choice ofname: some set theories adopt a set-formation principle, related toreplacement, called collection.The constant \cdx{Replace} constructs sets by the principle of {\bf replacement}. The syntax\hbox{\tt\ttlbrace$y$.\ $x$:$A$,$Q[x,y]$\ttrbrace} denotes the set {\tt Replace($A$,$\lambda x\,y. Q[x,y]$)}, which consists of all~$y$ suchthat there exists $x\in A$ satisfying~$Q[x,y]$. The Replacement Axiomhas the condition that $Q$ must be single-valued over~$A$: forall~$x\in A$ there exists at most one $y$ satisfying~$Q[x,y]$. Asingle-valued binary predicate is also called a {\bf class function}.The constant \cdx{RepFun} expresses a special case of replacement,where $Q[x,y]$ has the form $y=b[x]$. Such a $Q$ is triviallysingle-valued, since it is just the graph of the meta-levelfunction~$\lambda x. b[x]$. The resulting set consists of all $b[x]$for~$x\in A$. This is analogous to the \ML{} functional \texttt{map},since it applies a function to every element of a set. The syntax is\hbox{\tt\ttlbrace$b[x]$.\ $x$:$A$\ttrbrace}, which expands to {\tt RepFun($A$,$\lambda x. b[x]$)}.\index{*INT symbol}\index{*UN symbol} General unions and intersections of indexedfamilies of sets, namely $\bigcup@{x\in A}B[x]$ and $\bigcap@{x\in A}B[x]$,are written \hbox{\tt UN $x$:$A$.\ $B[x]$} and \hbox{\tt INT $x$:$A$.\ $B[x]$}.Their meaning is expressed using \texttt{RepFun} as\[\bigcup(\{B[x]. x\in A\}) \qquad\hbox{and}\qquad \bigcap(\{B[x]. x\in A\}). \]General sums $\sum@{x\in A}B[x]$ and products $\prod@{x\in A}B[x]$ can beconstructed in set theory, where $B[x]$ is a family of sets over~$A$. Theyhave as special cases $A\times B$ and $A\to B$, where $B$ is simply a set.This is similar to the situation in Constructive Type Theory (set theoryhas `dependent sets') and calls for similar syntactic conventions. Theconstants~\cdx{Sigma} and~\cdx{Pi} construct general sums andproducts. Instead of \texttt{Sigma($A$,$B$)} and \texttt{Pi($A$,$B$)} we maywrite \hbox{\tt SUM $x$:$A$.\ $B[x]$} and \hbox{\tt PROD $x$:$A$.\ $B[x]$}. \index{*SUM symbol}\index{*PROD symbol}%The special cases as \hbox{\tt$A$*$B$} and \hbox{\tt$A$->$B$} abbreviategeneral sums and products over a constant family.\footnote{Unlike normalinfix operators, {\tt*} and {\tt->} merely define abbreviations; there areno constants~\texttt{op~*} and~\hbox{\tt op~->}.} Isabelle accepts theseabbreviations in parsing and uses them whenever possible for printing.\index{*THE symbol} As mentioned above, whenever the axioms assert theexistence and uniqueness of a set, Isabelle's set theory declares a constantfor that set. These constants can express the {\bf definite description}operator~$\iota x. P[x]$, which stands for the unique~$a$ satisfying~$P[a]$,if such exists. Since all terms in ZF denote something, a description isalways meaningful, but we do not know its value unless $P[x]$ defines ituniquely. Using the constant~\cdx{The}, we may write descriptions as {\tt The($\lambda x. P[x]$)} or use the syntax \hbox{\tt THE $x$.\ $P[x]$}.\index{*lam symbol}Function sets may be written in $\lambda$-notation; $\lambda x\in A. b[x]$stands for the set of all pairs $\pair{x,b[x]}$ for $x\in A$. In order forthis to be a set, the function's domain~$A$ must be given. Using theconstant~\cdx{Lambda}, we may express function sets as {\ttLambda($A$,$\lambda x. b[x]$)} or use the syntax \hbox{\tt lam $x$:$A$.\ $b[x]$}.Isabelle's set theory defines two {\bf bounded quantifiers}:\begin{eqnarray*} \forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\ \exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x]\end{eqnarray*}The constants~\cdx{Ball} and~\cdx{Bex} are definedaccordingly. Instead of \texttt{Ball($A$,$P$)} and \texttt{Bex($A$,$P$)} we maywrite\hbox{\tt ALL $x$:$A$.\ $P[x]$} and \hbox{\tt EX $x$:$A$.\ $P[x]$}.%%%% ZF.thy\begin{figure}\begin{ttbox}\tdx{Let_def} Let(s, f) == f(s)\tdx{Ball_def} Ball(A,P) == ALL x. x:A --> P(x)\tdx{Bex_def} Bex(A,P) == EX x. x:A & P(x)\tdx{subset_def} A <= B == ALL x:A. x:B\tdx{extension} A = B <-> A <= B & B <= A\tdx{Union_iff} A : Union(C) <-> (EX B:C. A:B)\tdx{Pow_iff} A : Pow(B) <-> A <= B\tdx{foundation} A=0 | (EX x:A. ALL y:x. ~ y:A)\tdx{replacement} (ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==> b : PrimReplace(A,P) <-> (EX x:A. P(x,b))\subcaption{The Zermelo-Fraenkel Axioms}\tdx{Replace_def} Replace(A,P) == PrimReplace(A, \%x y. (EX!z. P(x,z)) & P(x,y))\tdx{RepFun_def} RepFun(A,f) == {\ttlbrace}y . x:A, y=f(x)\ttrbrace\tdx{the_def} The(P) == Union({\ttlbrace}y . x:{\ttlbrace}0{\ttrbrace}, P(y){\ttrbrace})\tdx{if_def} if(P,a,b) == THE z. P & z=a | ~P & z=b\tdx{Collect_def} Collect(A,P) == {\ttlbrace}y . x:A, x=y & P(x){\ttrbrace}\tdx{Upair_def} Upair(a,b) == {\ttlbrace}y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b){\ttrbrace}\subcaption{Consequences of replacement}\tdx{Inter_def} Inter(A) == {\ttlbrace}x:Union(A) . ALL y:A. x:y{\ttrbrace}\tdx{Un_def} A Un B == Union(Upair(A,B))\tdx{Int_def} A Int B == Inter(Upair(A,B))\tdx{Diff_def} A - B == {\ttlbrace}x:A . x~:B{\ttrbrace}\subcaption{Union, intersection, difference}\end{ttbox}\caption{Rules and axioms of ZF} \label{zf-rules}\end{figure}\begin{figure}\begin{ttbox}\tdx{cons_def} cons(a,A) == Upair(a,a) Un A\tdx{succ_def} succ(i) == cons(i,i)\tdx{infinity} 0:Inf & (ALL y:Inf. succ(y): Inf)\subcaption{Finite and infinite sets}\tdx{Pair_def} <a,b> == {\ttlbrace}{\ttlbrace}a,a{\ttrbrace}, {\ttlbrace}a,b{\ttrbrace}{\ttrbrace}\tdx{split_def} split(c,p) == THE y. EX a b. p=<a,b> & y=c(a,b)\tdx{fst_def} fst(A) == split(\%x y. x, p)\tdx{snd_def} snd(A) == split(\%x y. y, p)\tdx{Sigma_def} Sigma(A,B) == UN x:A. UN y:B(x). {\ttlbrace}<x,y>{\ttrbrace}\subcaption{Ordered pairs and Cartesian products}\tdx{converse_def} converse(r) == {\ttlbrace}z. w:r, EX x y. w=<x,y> & z=<y,x>{\ttrbrace}\tdx{domain_def} domain(r) == {\ttlbrace}x. w:r, EX y. w=<x,y>{\ttrbrace}\tdx{range_def} range(r) == domain(converse(r))\tdx{field_def} field(r) == domain(r) Un range(r)\tdx{image_def} r `` A == {\ttlbrace}y : range(r) . EX x:A. <x,y> : r{\ttrbrace}\tdx{vimage_def} r -`` A == converse(r)``A\subcaption{Operations on relations}\tdx{lam_def} Lambda(A,b) == {\ttlbrace}<x,b(x)> . x:A{\ttrbrace}\tdx{apply_def} f`a == THE y. <a,y> : f\tdx{Pi_def} Pi(A,B) == {\ttlbrace}f: Pow(Sigma(A,B)). ALL x:A. EX! y. <x,y>: f{\ttrbrace}\tdx{restrict_def} restrict(f,A) == lam x:A. f`x\subcaption{Functions and general product}\end{ttbox}\caption{Further definitions of ZF} \label{zf-defs}\end{figure}\section{The Zermelo-Fraenkel axioms}The axioms appear in Fig.\ts \ref{zf-rules}. They resemble thosepresented by Suppes~\cite{suppes72}. Most of the theory consists ofdefinitions. In particular, bounded quantifiers and the subset relationappear in other axioms. Object-level quantifiers and implications havebeen replaced by meta-level ones wherever possible, to simplify use of theaxioms. See the file \texttt{ZF/ZF.thy} for details.The traditional replacement axiom asserts\[ y \in \texttt{PrimReplace}(A,P) \bimp (\exists x\in A. P(x,y)) \]subject to the condition that $P(x,y)$ is single-valued for all~$x\in A$.The Isabelle theory defines \cdx{Replace} to apply\cdx{PrimReplace} to the single-valued part of~$P$, namely\[ (\exists!z. P(x,z)) \conj P(x,y). \]Thus $y\in \texttt{Replace}(A,P)$ if and only if there is some~$x$ such that$P(x,-)$ holds uniquely for~$y$. Because the equivalence is unconditional,\texttt{Replace} is much easier to use than \texttt{PrimReplace}; it defines thesame set, if $P(x,y)$ is single-valued. The nice syntax for replacementexpands to \texttt{Replace}.Other consequences of replacement include functional replacement(\cdx{RepFun}) and definite descriptions (\cdx{The}).Axioms for separation (\cdx{Collect}) and unordered pairs(\cdx{Upair}) are traditionally assumed, but they actually followfrom replacement~\cite[pages 237--8]{suppes72}.The definitions of general intersection, etc., are straightforward. Notethe definition of \texttt{cons}, which underlies the finite set notation.The axiom of infinity gives us a set that contains~0 and is closed undersuccessor (\cdx{succ}). Although this set is not uniquely defined,the theory names it (\cdx{Inf}) in order to simplify theconstruction of the natural numbers.Further definitions appear in Fig.\ts\ref{zf-defs}. Ordered pairs aredefined in the standard way, $\pair{a,b}\equiv\{\{a\},\{a,b\}\}$. Recallthat \cdx{Sigma}$(A,B)$ generalizes the Cartesian product of twosets. It is defined to be the union of all singleton sets$\{\pair{x,y}\}$, for $x\in A$ and $y\in B(x)$. This is a typical usage ofgeneral union.The projections \cdx{fst} and~\cdx{snd} are defined in terms of thegeneralized projection \cdx{split}. The latter has been borrowed fromMartin-L\"of's Type Theory, and is often easier to use than \cdx{fst}and~\cdx{snd}.Operations on relations include converse, domain, range, and image. Theset ${\tt Pi}(A,B)$ generalizes the space of functions between two sets.Note the simple definitions of $\lambda$-abstraction (using\cdx{RepFun}) and application (using a definite description). Thefunction \cdx{restrict}$(f,A)$ has the same values as~$f$, but onlyover the domain~$A$.%%%% zf.ML\begin{figure}\begin{ttbox}\tdx{ballI} [| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)\tdx{bspec} [| ALL x:A. P(x); x: A |] ==> P(x)\tdx{ballE} [| ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q\tdx{ball_cong} [| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> (ALL x:A. P(x)) <-> (ALL x:A'. P'(x))\tdx{bexI} [| P(x); x: A |] ==> EX x:A. P(x)\tdx{bexCI} [| ALL x:A. ~P(x) ==> P(a); a: A |] ==> EX x:A. P(x)\tdx{bexE} [| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q\tdx{bex_cong} [| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> (EX x:A. P(x)) <-> (EX x:A'. P'(x))\subcaption{Bounded quantifiers}\tdx{subsetI} (!!x. x:A ==> x:B) ==> A <= B\tdx{subsetD} [| A <= B; c:A |] ==> c:B\tdx{subsetCE} [| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P\tdx{subset_refl} A <= A\tdx{subset_trans} [| A<=B; B<=C |] ==> A<=C\tdx{equalityI} [| A <= B; B <= A |] ==> A = B\tdx{equalityD1} A = B ==> A<=B\tdx{equalityD2} A = B ==> B<=A\tdx{equalityE} [| A = B; [| A<=B; B<=A |] ==> P |] ==> P\subcaption{Subsets and extensionality}\tdx{emptyE} a:0 ==> P\tdx{empty_subsetI} 0 <= A\tdx{equals0I} [| !!y. y:A ==> False |] ==> A=0\tdx{equals0D} [| A=0; a:A |] ==> P\tdx{PowI} A <= B ==> A : Pow(B)\tdx{PowD} A : Pow(B) ==> A<=B\subcaption{The empty set; power sets}\end{ttbox}\caption{Basic derived rules for ZF} \label{zf-lemmas1}\end{figure}\section{From basic lemmas to function spaces}Faced with so many definitions, it is essential to prove lemmas. Eventrivial theorems like $A \int B = B \int A$ would be difficult toprove from the definitions alone. Isabelle's set theory derives manyrules using a natural deduction style. Ideally, a natural deductionrule should introduce or eliminate just one operator, but this is notalways practical. For most operators, we may forget its definitionand use its derived rules instead.\subsection{Fundamental lemmas}Figure~\ref{zf-lemmas1} presents the derived rules for the most basicoperators. The rules for the bounded quantifiers resemble those for theordinary quantifiers, but note that \tdx{ballE} uses a negated assumptionin the style of Isabelle's classical reasoner. The \rmindex{congruence rules} \tdx{ball_cong} and \tdx{bex_cong} are required by Isabelle'ssimplifier, but have few other uses. Congruence rules must be speciallyderived for all binding operators, and henceforth will not be shown.Figure~\ref{zf-lemmas1} also shows rules for the subset and equalityrelations (proof by extensionality), and rules about the empty set and thepower set operator.Figure~\ref{zf-lemmas2} presents rules for replacement and separation.The rules for \cdx{Replace} and \cdx{RepFun} are much simpler thancomparable rules for \texttt{PrimReplace} would be. The principle ofseparation is proved explicitly, although most proofs should use thenatural deduction rules for \texttt{Collect}. The elimination rule\tdx{CollectE} is equivalent to the two destruction rules\tdx{CollectD1} and \tdx{CollectD2}, but each rule is suited toparticular circumstances. Although too many rules can be confusing, thereis no reason to aim for a minimal set of rules. See the file\texttt{ZF/ZF.ML} for a complete listing.Figure~\ref{zf-lemmas3} presents rules for general union and intersection.The empty intersection should be undefined. We cannot have$\bigcap(\emptyset)=V$ because $V$, the universal class, is not a set. Allexpressions denote something in ZF set theory; the definition ofintersection implies $\bigcap(\emptyset)=\emptyset$, but this value isarbitrary. The rule \tdx{InterI} must have a premise to excludethe empty intersection. Some of the laws governing intersections requiresimilar premises.%the [p] gives better page breaking for the book\begin{figure}[p]\begin{ttbox}\tdx{ReplaceI} [| x: A; P(x,b); !!y. P(x,y) ==> y=b |] ==> b : {\ttlbrace}y. x:A, P(x,y){\ttrbrace}\tdx{ReplaceE} [| b : {\ttlbrace}y. x:A, P(x,y){\ttrbrace}; !!x. [| x: A; P(x,b); ALL y. P(x,y)-->y=b |] ==> R |] ==> R\tdx{RepFunI} [| a : A |] ==> f(a) : {\ttlbrace}f(x). x:A{\ttrbrace}\tdx{RepFunE} [| b : {\ttlbrace}f(x). x:A{\ttrbrace}; !!x.[| x:A; b=f(x) |] ==> P |] ==> P\tdx{separation} a : {\ttlbrace}x:A. P(x){\ttrbrace} <-> a:A & P(a)\tdx{CollectI} [| a:A; P(a) |] ==> a : {\ttlbrace}x:A. P(x){\ttrbrace}\tdx{CollectE} [| a : {\ttlbrace}x:A. P(x){\ttrbrace}; [| a:A; P(a) |] ==> R |] ==> R\tdx{CollectD1} a : {\ttlbrace}x:A. P(x){\ttrbrace} ==> a:A\tdx{CollectD2} a : {\ttlbrace}x:A. P(x){\ttrbrace} ==> P(a)\end{ttbox}\caption{Replacement and separation} \label{zf-lemmas2}\end{figure}\begin{figure}\begin{ttbox}\tdx{UnionI} [| B: C; A: B |] ==> A: Union(C)\tdx{UnionE} [| A : Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R\tdx{InterI} [| !!x. x: C ==> A: x; c:C |] ==> A : Inter(C)\tdx{InterD} [| A : Inter(C); B : C |] ==> A : B\tdx{InterE} [| A : Inter(C); A:B ==> R; ~ B:C ==> R |] ==> R\tdx{UN_I} [| a: A; b: B(a) |] ==> b: (UN x:A. B(x))\tdx{UN_E} [| b : (UN x:A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R\tdx{INT_I} [| !!x. x: A ==> b: B(x); a: A |] ==> b: (INT x:A. B(x))\tdx{INT_E} [| b : (INT x:A. B(x)); a: A |] ==> b : B(a)\end{ttbox}\caption{General union and intersection} \label{zf-lemmas3}\end{figure}%%% upair.ML\begin{figure}\begin{ttbox}\tdx{pairing} a:Upair(b,c) <-> (a=b | a=c)\tdx{UpairI1} a : Upair(a,b)\tdx{UpairI2} b : Upair(a,b)\tdx{UpairE} [| a : Upair(b,c); a = b ==> P; a = c ==> P |] ==> P\end{ttbox}\caption{Unordered pairs} \label{zf-upair1}\end{figure}\begin{figure}\begin{ttbox}\tdx{UnI1} c : A ==> c : A Un B\tdx{UnI2} c : B ==> c : A Un B\tdx{UnCI} (~c : B ==> c : A) ==> c : A Un B\tdx{UnE} [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P\tdx{IntI} [| c : A; c : B |] ==> c : A Int B\tdx{IntD1} c : A Int B ==> c : A\tdx{IntD2} c : A Int B ==> c : B\tdx{IntE} [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P\tdx{DiffI} [| c : A; ~ c : B |] ==> c : A - B\tdx{DiffD1} c : A - B ==> c : A\tdx{DiffD2} c : A - B ==> c ~: B\tdx{DiffE} [| c : A - B; [| c:A; ~ c:B |] ==> P |] ==> P\end{ttbox}\caption{Union, intersection, difference} \label{zf-Un}\end{figure}\begin{figure}\begin{ttbox}\tdx{consI1} a : cons(a,B)\tdx{consI2} a : B ==> a : cons(b,B)\tdx{consCI} (~ a:B ==> a=b) ==> a: cons(b,B)\tdx{consE} [| a : cons(b,A); a=b ==> P; a:A ==> P |] ==> P\tdx{singletonI} a : {\ttlbrace}a{\ttrbrace}\tdx{singletonE} [| a : {\ttlbrace}b{\ttrbrace}; a=b ==> P |] ==> P\end{ttbox}\caption{Finite and singleton sets} \label{zf-upair2}\end{figure}\begin{figure}\begin{ttbox}\tdx{succI1} i : succ(i)\tdx{succI2} i : j ==> i : succ(j)\tdx{succCI} (~ i:j ==> i=j) ==> i: succ(j)\tdx{succE} [| i : succ(j); i=j ==> P; i:j ==> P |] ==> P\tdx{succ_neq_0} [| succ(n)=0 |] ==> P\tdx{succ_inject} succ(m) = succ(n) ==> m=n\end{ttbox}\caption{The successor function} \label{zf-succ}\end{figure}\begin{figure}\begin{ttbox}\tdx{the_equality} [| P(a); !!x. P(x) ==> x=a |] ==> (THE x. P(x)) = a\tdx{theI} EX! x. P(x) ==> P(THE x. P(x))\tdx{if_P} P ==> (if P then a else b) = a\tdx{if_not_P} ~P ==> (if P then a else b) = b\tdx{mem_asym} [| a:b; b:a |] ==> P\tdx{mem_irrefl} a:a ==> P\end{ttbox}\caption{Descriptions; non-circularity} \label{zf-the}\end{figure}\subsection{Unordered pairs and finite sets}Figure~\ref{zf-upair1} presents the principle of unordered pairing, alongwith its derived rules. Binary union and intersection are defined in termsof ordered pairs (Fig.\ts\ref{zf-Un}). Set difference is also included. Therule \tdx{UnCI} is useful for classical reasoning about unions,like \texttt{disjCI}\@; it supersedes \tdx{UnI1} and\tdx{UnI2}, but these rules are often easier to work with. Forintersection and difference we have both elimination and destruction rules.Again, there is no reason to provide a minimal rule set.Figure~\ref{zf-upair2} is concerned with finite sets: it presents rulesfor~\texttt{cons}, the finite set constructor, and rules for singletonsets. Figure~\ref{zf-succ} presents derived rules for the successorfunction, which is defined in terms of~\texttt{cons}. The proof that {\tt succ} is injective appears to require the Axiom of Foundation.Definite descriptions (\sdx{THE}) are defined in terms of the singletonset~$\{0\}$, but their derived rules fortunately hide this(Fig.\ts\ref{zf-the}). The rule~\tdx{theI} is difficult to applybecause of the two occurrences of~$\Var{P}$. However,\tdx{the_equality} does not have this problem and the files containmany examples of its use.Finally, the impossibility of having both $a\in b$ and $b\in a$(\tdx{mem_asym}) is proved by applying the Axiom of Foundation tothe set $\{a,b\}$. The impossibility of $a\in a$ is a trivial consequence.See the file \texttt{ZF/upair.ML} for full proofs of the rules discussed inthis section.%%% subset.ML\begin{figure}\begin{ttbox}\tdx{Union_upper} B:A ==> B <= Union(A)\tdx{Union_least} [| !!x. x:A ==> x<=C |] ==> Union(A) <= C\tdx{Inter_lower} B:A ==> Inter(A) <= B\tdx{Inter_greatest} [| a:A; !!x. x:A ==> C<=x |] ==> C <= Inter(A)\tdx{Un_upper1} A <= A Un B\tdx{Un_upper2} B <= A Un B\tdx{Un_least} [| A<=C; B<=C |] ==> A Un B <= C\tdx{Int_lower1} A Int B <= A\tdx{Int_lower2} A Int B <= B\tdx{Int_greatest} [| C<=A; C<=B |] ==> C <= A Int B\tdx{Diff_subset} A-B <= A\tdx{Diff_contains} [| C<=A; C Int B = 0 |] ==> C <= A-B\tdx{Collect_subset} Collect(A,P) <= A\end{ttbox}\caption{Subset and lattice properties} \label{zf-subset}\end{figure}\subsection{Subset and lattice properties}The subset relation is a complete lattice. Unions form least upper bounds;non-empty intersections form greatest lower bounds. Figure~\ref{zf-subset}shows the corresponding rules. A few other laws involving subsets areincluded. Proofs are in the file \texttt{ZF/subset.ML}.Reasoning directly about subsets often yields clearer proofs thanreasoning about the membership relation. Section~\ref{sec:ZF-pow-example}below presents an example of this, proving the equation ${{\tt Pow}(A)\cap {\tt Pow}(B)}= {\tt Pow}(A\cap B)$.%%% pair.ML\begin{figure}\begin{ttbox}\tdx{Pair_inject1} <a,b> = <c,d> ==> a=c\tdx{Pair_inject2} <a,b> = <c,d> ==> b=d\tdx{Pair_inject} [| <a,b> = <c,d>; [| a=c; b=d |] ==> P |] ==> P\tdx{Pair_neq_0} <a,b>=0 ==> P\tdx{fst_conv} fst(<a,b>) = a\tdx{snd_conv} snd(<a,b>) = b\tdx{split} split(\%x y. c(x,y), <a,b>) = c(a,b)\tdx{SigmaI} [| a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)\tdx{SigmaE} [| c: Sigma(A,B); !!x y.[| x:A; y:B(x); c=<x,y> |] ==> P |] ==> P\tdx{SigmaE2} [| <a,b> : Sigma(A,B); [| a:A; b:B(a) |] ==> P |] ==> P\end{ttbox}\caption{Ordered pairs; projections; general sums} \label{zf-pair}\end{figure}\subsection{Ordered pairs} \label{sec:pairs}Figure~\ref{zf-pair} presents the rules governing ordered pairs,projections and general sums. File \texttt{ZF/pair.ML} contains thefull (and tedious) proof that $\{\{a\},\{a,b\}\}$ functions as an orderedpair. This property is expressed as two destruction rules,\tdx{Pair_inject1} and \tdx{Pair_inject2}, and equivalentlyas the elimination rule \tdx{Pair_inject}.The rule \tdx{Pair_neq_0} asserts $\pair{a,b}\neq\emptyset$. Thisis a property of $\{\{a\},\{a,b\}\}$, and need not hold for other encodings of ordered pairs. The non-standard ordered pairs mentioned belowsatisfy $\pair{\emptyset;\emptyset}=\emptyset$.The natural deduction rules \tdx{SigmaI} and \tdx{SigmaE}assert that \cdx{Sigma}$(A,B)$ consists of all pairs of the form$\pair{x,y}$, for $x\in A$ and $y\in B(x)$. The rule \tdx{SigmaE2}merely states that $\pair{a,b}\in \texttt{Sigma}(A,B)$ implies $a\in A$ and$b\in B(a)$.In addition, it is possible to use tuples as patterns in abstractions:\begin{center}{\tt\%<$x$,$y$>. $t$} \quad stands for\quad \texttt{split(\%$x$ $y$.\ $t$)}\end{center}Nested patterns are translated recursively:{\tt\%<$x$,$y$,$z$>. $t$} $\leadsto$ {\tt\%<$x$,<$y$,$z$>>. $t$} $\leadsto$\texttt{split(\%$x$.\%<$y$,$z$>. $t$)} $\leadsto$ \texttt{split(\%$x$. split(\%$y$ $z$.\ $t$))}. The reverse translation is performed upon printing.\begin{warn} The translation between patterns and \texttt{split} is performed automatically by the parser and printer. Thus the internal and external form of a term may differ, which affects proofs. For example the term {\tt (\%<x,y>.<y,x>)<a,b>} requires the theorem \texttt{split} to rewrite to {\tt<b,a>}.\end{warn}In addition to explicit $\lambda$-abstractions, patterns can be used in anyvariable binding construct which is internally described by a$\lambda$-abstraction. Here are some important examples:\begin{description}\item[Let:] \texttt{let {\it pattern} = $t$ in $u$}\item[Choice:] \texttt{THE~{\it pattern}~.~$P$}\item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$}\item[Comprehension:] \texttt{{\ttlbrace}~{\it pattern}:$A$~.~$P$~{\ttrbrace}}\end{description}%%% domrange.ML\begin{figure}\begin{ttbox}\tdx{domainI} <a,b>: r ==> a : domain(r)\tdx{domainE} [| a : domain(r); !!y. <a,y>: r ==> P |] ==> P\tdx{domain_subset} domain(Sigma(A,B)) <= A\tdx{rangeI} <a,b>: r ==> b : range(r)\tdx{rangeE} [| b : range(r); !!x. <x,b>: r ==> P |] ==> P\tdx{range_subset} range(A*B) <= B\tdx{fieldI1} <a,b>: r ==> a : field(r)\tdx{fieldI2} <a,b>: r ==> b : field(r)\tdx{fieldCI} (~ <c,a>:r ==> <a,b>: r) ==> a : field(r)\tdx{fieldE} [| a : field(r); !!x. <a,x>: r ==> P; !!x. <x,a>: r ==> P |] ==> P\tdx{field_subset} field(A*A) <= A\end{ttbox}\caption{Domain, range and field of a relation} \label{zf-domrange}\end{figure}\begin{figure}\begin{ttbox}\tdx{imageI} [| <a,b>: r; a:A |] ==> b : r``A\tdx{imageE} [| b: r``A; !!x.[| <x,b>: r; x:A |] ==> P |] ==> P\tdx{vimageI} [| <a,b>: r; b:B |] ==> a : r-``B\tdx{vimageE} [| a: r-``B; !!x.[| <a,x>: r; x:B |] ==> P |] ==> P\end{ttbox}\caption{Image and inverse image} \label{zf-domrange2}\end{figure}\subsection{Relations}Figure~\ref{zf-domrange} presents rules involving relations, which are setsof ordered pairs. The converse of a relation~$r$ is the set of all pairs$\pair{y,x}$ such that $\pair{x,y}\in r$; if $r$ is a function, then{\cdx{converse}$(r)$} is its inverse. The rules for the domainoperation, namely \tdx{domainI} and~\tdx{domainE}, assert that\cdx{domain}$(r)$ consists of all~$x$ such that $r$ containssome pair of the form~$\pair{x,y}$. The range operation is similar, andthe field of a relation is merely the union of its domain and range. Figure~\ref{zf-domrange2} presents rules for images and inverse images.Note that these operations are generalisations of range and domain,respectively. See the file \texttt{ZF/domrange.ML} for derivations of therules.%%% func.ML\begin{figure}\begin{ttbox}\tdx{fun_is_rel} f: Pi(A,B) ==> f <= Sigma(A,B)\tdx{apply_equality} [| <a,b>: f; f: Pi(A,B) |] ==> f`a = b\tdx{apply_equality2} [| <a,b>: f; <a,c>: f; f: Pi(A,B) |] ==> b=c\tdx{apply_type} [| f: Pi(A,B); a:A |] ==> f`a : B(a)\tdx{apply_Pair} [| f: Pi(A,B); a:A |] ==> <a,f`a>: f\tdx{apply_iff} f: Pi(A,B) ==> <a,b>: f <-> a:A & f`a = b\tdx{fun_extension} [| f : Pi(A,B); g: Pi(A,D); !!x. x:A ==> f`x = g`x |] ==> f=g\tdx{domain_type} [| <a,b> : f; f: Pi(A,B) |] ==> a : A\tdx{range_type} [| <a,b> : f; f: Pi(A,B) |] ==> b : B(a)\tdx{Pi_type} [| f: A->C; !!x. x:A ==> f`x: B(x) |] ==> f: Pi(A,B)\tdx{domain_of_fun} f: Pi(A,B) ==> domain(f)=A\tdx{range_of_fun} f: Pi(A,B) ==> f: A->range(f)\tdx{restrict} a : A ==> restrict(f,A) ` a = f`a\tdx{restrict_type} [| !!x. x:A ==> f`x: B(x) |] ==> restrict(f,A) : Pi(A,B)\end{ttbox}\caption{Functions} \label{zf-func1}\end{figure}\begin{figure}\begin{ttbox}\tdx{lamI} a:A ==> <a,b(a)> : (lam x:A. b(x))\tdx{lamE} [| p: (lam x:A. b(x)); !!x.[| x:A; p=<x,b(x)> |] ==> P |] ==> P\tdx{lam_type} [| !!x. x:A ==> b(x): B(x) |] ==> (lam x:A. b(x)) : Pi(A,B)\tdx{beta} a : A ==> (lam x:A. b(x)) ` a = b(a)\tdx{eta} f : Pi(A,B) ==> (lam x:A. f`x) = f\end{ttbox}\caption{$\lambda$-abstraction} \label{zf-lam}\end{figure}\begin{figure}\begin{ttbox}\tdx{fun_empty} 0: 0->0\tdx{fun_single} {\ttlbrace}<a,b>{\ttrbrace} : {\ttlbrace}a{\ttrbrace} -> {\ttlbrace}b{\ttrbrace}\tdx{fun_disjoint_Un} [| f: A->B; g: C->D; A Int C = 0 |] ==> (f Un g) : (A Un C) -> (B Un D)\tdx{fun_disjoint_apply1} [| a:A; f: A->B; g: C->D; A Int C = 0 |] ==> (f Un g)`a = f`a\tdx{fun_disjoint_apply2} [| c:C; f: A->B; g: C->D; A Int C = 0 |] ==> (f Un g)`c = g`c\end{ttbox}\caption{Constructing functions from smaller sets} \label{zf-func2}\end{figure}\subsection{Functions}Functions, represented by graphs, are notoriously difficult to reasonabout. The file \texttt{ZF/func.ML} derives many rules, which overlap morethan they ought. This section presents the more important rules.Figure~\ref{zf-func1} presents the basic properties of \cdx{Pi}$(A,B)$,the generalized function space. For example, if $f$ is a function and$\pair{a,b}\in f$, then $f`a=b$ (\tdx{apply_equality}). Two functionsare equal provided they have equal domains and deliver equals results(\tdx{fun_extension}).By \tdx{Pi_type}, a function typing of the form $f\in A\to C$ can berefined to the dependent typing $f\in\prod@{x\in A}B(x)$, given a suitablefamily of sets $\{B(x)\}@{x\in A}$. Conversely, by \tdx{range_of_fun},any dependent typing can be flattened to yield a function type of the form$A\to C$; here, $C={\tt range}(f)$.Among the laws for $\lambda$-abstraction, \tdx{lamI} and \tdx{lamE}describe the graph of the generated function, while \tdx{beta} and\tdx{eta} are the standard conversions. We essentially have adependently-typed $\lambda$-calculus (Fig.\ts\ref{zf-lam}).Figure~\ref{zf-func2} presents some rules that can be used to constructfunctions explicitly. We start with functions consisting of at most onepair, and may form the union of two functions provided their domains aredisjoint. \begin{figure}\begin{ttbox}\tdx{Int_absorb} A Int A = A\tdx{Int_commute} A Int B = B Int A\tdx{Int_assoc} (A Int B) Int C = A Int (B Int C)\tdx{Int_Un_distrib} (A Un B) Int C = (A Int C) Un (B Int C)\tdx{Un_absorb} A Un A = A\tdx{Un_commute} A Un B = B Un A\tdx{Un_assoc} (A Un B) Un C = A Un (B Un C)\tdx{Un_Int_distrib} (A Int B) Un C = (A Un C) Int (B Un C)\tdx{Diff_cancel} A-A = 0\tdx{Diff_disjoint} A Int (B-A) = 0\tdx{Diff_partition} A<=B ==> A Un (B-A) = B\tdx{double_complement} [| A<=B; B<= C |] ==> (B - (C-A)) = A\tdx{Diff_Un} A - (B Un C) = (A-B) Int (A-C)\tdx{Diff_Int} A - (B Int C) = (A-B) Un (A-C)\tdx{Union_Un_distrib} Union(A Un B) = Union(A) Un Union(B)\tdx{Inter_Un_distrib} [| a:A; b:B |] ==> Inter(A Un B) = Inter(A) Int Inter(B)\tdx{Int_Union_RepFun} A Int Union(B) = (UN C:B. A Int C)\tdx{Un_Inter_RepFun} b:B ==> A Un Inter(B) = (INT C:B. A Un C)\tdx{SUM_Un_distrib1} (SUM x:A Un B. C(x)) = (SUM x:A. C(x)) Un (SUM x:B. C(x))\tdx{SUM_Un_distrib2} (SUM x:C. A(x) Un B(x)) = (SUM x:C. A(x)) Un (SUM x:C. B(x))\tdx{SUM_Int_distrib1} (SUM x:A Int B. C(x)) = (SUM x:A. C(x)) Int (SUM x:B. C(x))\tdx{SUM_Int_distrib2} (SUM x:C. A(x) Int B(x)) = (SUM x:C. A(x)) Int (SUM x:C. B(x))\end{ttbox}\caption{Equalities} \label{zf-equalities}\end{figure}\begin{figure}%\begin{constants} % \cdx{1} & $i$ & & $\{\emptyset\}$ \\% \cdx{bool} & $i$ & & the set $\{\emptyset,1\}$ \\% \cdx{cond} & $[i,i,i]\To i$ & & conditional for \texttt{bool} \\% \cdx{not} & $i\To i$ & & negation for \texttt{bool} \\% \sdx{and} & $[i,i]\To i$ & Left 70 & conjunction for \texttt{bool} \\% \sdx{or} & $[i,i]\To i$ & Left 65 & disjunction for \texttt{bool} \\% \sdx{xor} & $[i,i]\To i$ & Left 65 & exclusive-or for \texttt{bool}%\end{constants}%\begin{ttbox}\tdx{bool_def} bool == {\ttlbrace}0,1{\ttrbrace}\tdx{cond_def} cond(b,c,d) == if b=1 then c else d\tdx{not_def} not(b) == cond(b,0,1)\tdx{and_def} a and b == cond(a,b,0)\tdx{or_def} a or b == cond(a,1,b)\tdx{xor_def} a xor b == cond(a,not(b),b)\tdx{bool_1I} 1 : bool\tdx{bool_0I} 0 : bool\tdx{boolE} [| c: bool; c=1 ==> P; c=0 ==> P |] ==> P\tdx{cond_1} cond(1,c,d) = c\tdx{cond_0} cond(0,c,d) = d\end{ttbox}\caption{The booleans} \label{zf-bool}\end{figure}\section{Further developments}The next group of developments is complex and extensive, and onlyhighlights can be covered here. It involves many theories and ML files ofproofs. Figure~\ref{zf-equalities} presents commutative, associative, distributive,and idempotency laws of union and intersection, along with other equations.See file \texttt{ZF/equalities.ML}.Theory \thydx{Bool} defines $\{0,1\}$ as a set of booleans, with the usualoperators including a conditional (Fig.\ts\ref{zf-bool}). Although ZF is afirst-order theory, you can obtain the effect of higher-order logic using\texttt{bool}-valued functions, for example. The constant~\texttt{1} istranslated to \texttt{succ(0)}.\begin{figure}\index{*"+ symbol}\begin{constants} \it symbol & \it meta-type & \it priority & \it description \\ \tt + & $[i,i]\To i$ & Right 65 & disjoint union operator\\ \cdx{Inl}~~\cdx{Inr} & $i\To i$ & & injections\\ \cdx{case} & $[i\To i,i\To i, i]\To i$ & & conditional for $A+B$\end{constants}\begin{ttbox}\tdx{sum_def} A+B == {\ttlbrace}0{\ttrbrace}*A Un {\ttlbrace}1{\ttrbrace}*B\tdx{Inl_def} Inl(a) == <0,a>\tdx{Inr_def} Inr(b) == <1,b>\tdx{case_def} case(c,d,u) == split(\%y z. cond(y, d(z), c(z)), u)\tdx{sum_InlI} a : A ==> Inl(a) : A+B\tdx{sum_InrI} b : B ==> Inr(b) : A+B\tdx{Inl_inject} Inl(a)=Inl(b) ==> a=b\tdx{Inr_inject} Inr(a)=Inr(b) ==> a=b\tdx{Inl_neq_Inr} Inl(a)=Inr(b) ==> P\tdx{sumE2} u: A+B ==> (EX x. x:A & u=Inl(x)) | (EX y. y:B & u=Inr(y))\tdx{case_Inl} case(c,d,Inl(a)) = c(a)\tdx{case_Inr} case(c,d,Inr(b)) = d(b)\end{ttbox}\caption{Disjoint unions} \label{zf-sum}\end{figure}\subsection{Disjoint unions}Theory \thydx{Sum} defines the disjoint union of two sets, withinjections and a case analysis operator (Fig.\ts\ref{zf-sum}). Disjointunions play a role in datatype definitions, particularly when there ismutual recursion~\cite{paulson-set-II}.\begin{figure}\begin{ttbox}\tdx{QPair_def} <a;b> == a+b\tdx{qsplit_def} qsplit(c,p) == THE y. EX a b. p=<a;b> & y=c(a,b)\tdx{qfsplit_def} qfsplit(R,z) == EX x y. z=<x;y> & R(x,y)\tdx{qconverse_def} qconverse(r) == {\ttlbrace}z. w:r, EX x y. w=<x;y> & z=<y;x>{\ttrbrace}\tdx{QSigma_def} QSigma(A,B) == UN x:A. UN y:B(x). {\ttlbrace}<x;y>{\ttrbrace}\tdx{qsum_def} A <+> B == ({\ttlbrace}0{\ttrbrace} <*> A) Un ({\ttlbrace}1{\ttrbrace} <*> B)\tdx{QInl_def} QInl(a) == <0;a>\tdx{QInr_def} QInr(b) == <1;b>\tdx{qcase_def} qcase(c,d) == qsplit(\%y z. cond(y, d(z), c(z)))\end{ttbox}\caption{Non-standard pairs, products and sums} \label{zf-qpair}\end{figure}\subsection{Non-standard ordered pairs}Theory \thydx{QPair} defines a notion of ordered pair that admitsnon-well-founded tupling (Fig.\ts\ref{zf-qpair}). Such pairs are written{\tt<$a$;$b$>}. It also defines the eliminator \cdx{qsplit}, theconverse operator \cdx{qconverse}, and the summation operator\cdx{QSigma}. These are completely analogous to the correspondingversions for standard ordered pairs. The theory goes on to define anon-standard notion of disjoint sum using non-standard pairs. All of theseconcepts satisfy the same properties as their standard counterparts; inaddition, {\tt<$a$;$b$>} is continuous. The theory supports coinductivedefinitions, for example of infinite lists~\cite{paulson-mscs}.\begin{figure}\begin{ttbox}\tdx{bnd_mono_def} bnd_mono(D,h) == h(D)<=D & (ALL W X. W<=X --> X<=D --> h(W) <= h(X))\tdx{lfp_def} lfp(D,h) == Inter({\ttlbrace}X: Pow(D). h(X) <= X{\ttrbrace})\tdx{gfp_def} gfp(D,h) == Union({\ttlbrace}X: Pow(D). X <= h(X){\ttrbrace})\tdx{lfp_lowerbound} [| h(A) <= A; A<=D |] ==> lfp(D,h) <= A\tdx{lfp_subset} lfp(D,h) <= D\tdx{lfp_greatest} [| bnd_mono(D,h); !!X. [| h(X) <= X; X<=D |] ==> A<=X |] ==> A <= lfp(D,h)\tdx{lfp_Tarski} bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))\tdx{induct} [| a : lfp(D,h); bnd_mono(D,h); !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) |] ==> P(a)\tdx{lfp_mono} [| bnd_mono(D,h); bnd_mono(E,i); !!X. X<=D ==> h(X) <= i(X) |] ==> lfp(D,h) <= lfp(E,i)\tdx{gfp_upperbound} [| A <= h(A); A<=D |] ==> A <= gfp(D,h)\tdx{gfp_subset} gfp(D,h) <= D\tdx{gfp_least} [| bnd_mono(D,h); !!X. [| X <= h(X); X<=D |] ==> X<=A |] ==> gfp(D,h) <= A\tdx{gfp_Tarski} bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))\tdx{coinduct} [| bnd_mono(D,h); a: X; X <= h(X Un gfp(D,h)); X <= D |] ==> a : gfp(D,h)\tdx{gfp_mono} [| bnd_mono(D,h); D <= E; !!X. X<=D ==> h(X) <= i(X) |] ==> gfp(D,h) <= gfp(E,i)\end{ttbox}\caption{Least and greatest fixedpoints} \label{zf-fixedpt}\end{figure}\subsection{Least and greatest fixedpoints}The Knaster-Tarski Theorem states that every monotone function over acomplete lattice has a fixedpoint. Theory \thydx{Fixedpt} proves theTheorem only for a particular lattice, namely the lattice of subsets of aset (Fig.\ts\ref{zf-fixedpt}). The theory defines least and greatestfixedpoint operators with corresponding induction and coinduction rules.These are essential to many definitions that follow, including the naturalnumbers and the transitive closure operator. The (co)inductive definitionpackage also uses the fixedpoint operators~\cite{paulson-CADE}. SeeDavey and Priestley~\cite{davey-priestley} for more on the Knaster-TarskiTheorem and my paper~\cite{paulson-set-II} for discussion of the Isabelleproofs.Monotonicity properties are proved for most of the set-forming operations:union, intersection, Cartesian product, image, domain, range, etc. Theseare useful for applying the Knaster-Tarski Fixedpoint Theorem. The proofsthemselves are trivial applications of Isabelle's classical reasoner. Seefile \texttt{ZF/mono.ML}.\subsection{Finite sets and lists}Theory \texttt{Finite} (Figure~\ref{zf-fin}) defines the finite set operator;${\tt Fin}(A)$ is the set of all finite sets over~$A$. The theory employsIsabelle's inductive definition package, which proves various rulesautomatically. The induction rule shown is stronger than the one proved bythe package. The theory also defines the set of all finite functionsbetween two given sets.\begin{figure}\begin{ttbox}\tdx{Fin.emptyI} 0 : Fin(A)\tdx{Fin.consI} [| a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)\tdx{Fin_induct} [| b: Fin(A); P(0); !!x y. [| x: A; y: Fin(A); x~:y; P(y) |] ==> P(cons(x,y)) |] ==> P(b)\tdx{Fin_mono} A<=B ==> Fin(A) <= Fin(B)\tdx{Fin_UnI} [| b: Fin(A); c: Fin(A) |] ==> b Un c : Fin(A)\tdx{Fin_UnionI} C : Fin(Fin(A)) ==> Union(C) : Fin(A)\tdx{Fin_subset} [| c<=b; b: Fin(A) |] ==> c: Fin(A)\end{ttbox}\caption{The finite set operator} \label{zf-fin}\end{figure}\begin{figure}\begin{constants} \it symbol & \it meta-type & \it priority & \it description \\ \cdx{list} & $i\To i$ && lists over some set\\ \cdx{list_case} & $[i, [i,i]\To i, i] \To i$ && conditional for $list(A)$ \\ \cdx{map} & $[i\To i, i] \To i$ & & mapping functional\\ \cdx{length} & $i\To i$ & & length of a list\\ \cdx{rev} & $i\To i$ & & reverse of a list\\ \tt \at & $[i,i]\To i$ & Right 60 & append for lists\\ \cdx{flat} & $i\To i$ & & append of list of lists\end{constants}\underscoreon %%because @ is used here\begin{ttbox}\tdx{NilI} Nil : list(A)\tdx{ConsI} [| a: A; l: list(A) |] ==> Cons(a,l) : list(A)\tdx{List.induct} [| l: list(A); P(Nil); !!x y. [| x: A; y: list(A); P(y) |] ==> P(Cons(x,y)) |] ==> P(l)\tdx{Cons_iff} Cons(a,l)=Cons(a',l') <-> a=a' & l=l'\tdx{Nil_Cons_iff} ~ Nil=Cons(a,l)\tdx{list_mono} A<=B ==> list(A) <= list(B)\tdx{map_ident} l: list(A) ==> map(\%u. u, l) = l\tdx{map_compose} l: list(A) ==> map(h, map(j,l)) = map(\%u. h(j(u)), l)\tdx{map_app_distrib} xs: list(A) ==> map(h, xs@ys) = map(h,xs) @ map(h,ys)\tdx{map_type} [| l: list(A); !!x. x: A ==> h(x): B |] ==> map(h,l) : list(B)\tdx{map_flat} ls: list(list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))\end{ttbox}\caption{Lists} \label{zf-list}\end{figure}Figure~\ref{zf-list} presents the set of lists over~$A$, ${\tt list}(A)$. Thedefinition employs Isabelle's datatype package, which defines the introductionand induction rules automatically, as well as the constructors, case operator(\verb|list_case|) and recursion operator. The theory then defines the usuallist functions by primitive recursion. See theory \texttt{List}.\subsection{Miscellaneous}\begin{figure}\begin{constants} \it symbol & \it meta-type & \it priority & \it description \\ \sdx{O} & $[i,i]\To i$ & Right 60 & composition ($\circ$) \\ \cdx{id} & $i\To i$ & & identity function \\ \cdx{inj} & $[i,i]\To i$ & & injective function space\\ \cdx{surj} & $[i,i]\To i$ & & surjective function space\\ \cdx{bij} & $[i,i]\To i$ & & bijective function space\end{constants}\begin{ttbox}\tdx{comp_def} r O s == {\ttlbrace}xz : domain(s)*range(r) . EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r{\ttrbrace}\tdx{id_def} id(A) == (lam x:A. x)\tdx{inj_def} inj(A,B) == {\ttlbrace} f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x {\ttrbrace}\tdx{surj_def} surj(A,B) == {\ttlbrace} f: A->B . ALL y:B. EX x:A. f`x=y {\ttrbrace}\tdx{bij_def} bij(A,B) == inj(A,B) Int surj(A,B)\tdx{left_inverse} [| f: inj(A,B); a: A |] ==> converse(f)`(f`a) = a\tdx{right_inverse} [| f: inj(A,B); b: range(f) |] ==> f`(converse(f)`b) = b\tdx{inj_converse_inj} f: inj(A,B) ==> converse(f): inj(range(f), A)\tdx{bij_converse_bij} f: bij(A,B) ==> converse(f): bij(B,A)\tdx{comp_type} [| s<=A*B; r<=B*C |] ==> (r O s) <= A*C\tdx{comp_assoc} (r O s) O t = r O (s O t)\tdx{left_comp_id} r<=A*B ==> id(B) O r = r\tdx{right_comp_id} r<=A*B ==> r O id(A) = r\tdx{comp_func} [| g:A->B; f:B->C |] ==> (f O g):A->C\tdx{comp_func_apply} [| g:A->B; f:B->C; a:A |] ==> (f O g)`a = f`(g`a)\tdx{comp_inj} [| g:inj(A,B); f:inj(B,C) |] ==> (f O g):inj(A,C)\tdx{comp_surj} [| g:surj(A,B); f:surj(B,C) |] ==> (f O g):surj(A,C)\tdx{comp_bij} [| g:bij(A,B); f:bij(B,C) |] ==> (f O g):bij(A,C)\tdx{left_comp_inverse} f: inj(A,B) ==> converse(f) O f = id(A)\tdx{right_comp_inverse} f: surj(A,B) ==> f O converse(f) = id(B)\tdx{bij_disjoint_Un} [| f: bij(A,B); g: bij(C,D); A Int C = 0; B Int D = 0 |] ==> (f Un g) : bij(A Un C, B Un D)\tdx{restrict_bij} [| f:inj(A,B); C<=A |] ==> restrict(f,C): bij(C, f``C)\end{ttbox}\caption{Permutations} \label{zf-perm}\end{figure}The theory \thydx{Perm} is concerned with permutations (bijections) andrelated concepts. These include composition of relations, the identityrelation, and three specialized function spaces: injective, surjective andbijective. Figure~\ref{zf-perm} displays many of their properties thathave been proved. These results are fundamental to a treatment ofequipollence and cardinality.Theory \thydx{Univ} defines a `universe' $\texttt{univ}(A)$, which is used bythe datatype package. This set contains $A$ and thenatural numbers. Vitally, it is closed under finite products: ${\tt univ}(A)\times{\tt univ}(A)\subseteq{\tt univ}(A)$. This theory alsodefines the cumulative hierarchy of axiomatic set theory, whichtraditionally is written $V@\alpha$ for an ordinal~$\alpha$. The`universe' is a simple generalization of~$V@\omega$.Theory \thydx{QUniv} defines a `universe' ${\tt quniv}(A)$, which is used bythe datatype package to construct codatatypes such as streams. It isanalogous to ${\tt univ}(A)$ (and is defined in terms of it) but is closedunder the non-standard product and sum.\section{Automatic Tools}ZF provides the simplifier and the classical reasoner. Moreover it supplies aspecialized tool to infer `types' of terms.\subsection{Simplification}ZF inherits simplification from FOL but adopts it for set theory. Theextraction of rewrite rules takes the ZF primitives into account. It canstrip bounded universal quantifiers from a formula; for example, ${\forall x\in A. f(x)=g(x)}$ yields the conditional rewrite rule $x\in A \Impf(x)=g(x)$. Given $a\in\{x\in A. P(x)\}$ it extracts rewrite rules from $a\inA$ and~$P(a)$. It can also break down $a\in A\int B$ and $a\in A-B$.Simplification tactics tactics such as \texttt{Asm_simp_tac} and\texttt{Full_simp_tac} use the default simpset (\texttt{simpset()}), whichworks for most purposes. A small simplification set for set theory iscalled~\ttindexbold{ZF_ss}, and you can even use \ttindex{FOL_ss} as a minimalstarting point. \texttt{ZF_ss} contains congruence rules for all the bindingoperators of ZF. It contains all the conversion rules, such as \texttt{fst}and \texttt{snd}, as well as the rewrites shown in Fig.\ts\ref{zf-simpdata}.See the file \texttt{ZF/simpdata.ML} for a fuller list.\subsection{Classical Reasoning}As for the classical reasoner, tactics such as \texttt{Blast_tac} and {\tt Best_tac} refer to the default claset (\texttt{claset()}). This works formost purposes. Named clasets include \ttindexbold{ZF_cs} (basic set theory)and \ttindexbold{le_cs} (useful for reasoning about the relations $<$ and$\le$). You can use \ttindex{FOL_cs} as a minimal basis for building your ownclasets. See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%{Chap.\ts\ref{chap:classical}} for more discussion of classical proof methods.\begin{figure}\begin{eqnarray*} a\in \emptyset & \bimp & \bot\\ a \in A \un B & \bimp & a\in A \disj a\in B\\ a \in A \int B & \bimp & a\in A \conj a\in B\\ a \in A-B & \bimp & a\in A \conj \neg (a\in B)\\ \pair{a,b}\in {\tt Sigma}(A,B) & \bimp & a\in A \conj b\in B(a)\\ a \in {\tt Collect}(A,P) & \bimp & a\in A \conj P(a)\\ (\forall x \in \emptyset. P(x)) & \bimp & \top\\ (\forall x \in A. \top) & \bimp & \top\end{eqnarray*}\caption{Some rewrite rules for set theory} \label{zf-simpdata}\end{figure}\subsection{Type-Checking Tactics}\index{type-checking tactics}Isabelle/ZF provides simple tactics to help automate those proofs that areessentially type-checking. Such proofs are built by applying rules such asthese:\begin{ttbox}[| ?P ==> ?a: ?A; ~?P ==> ?b: ?A |] ==> (if ?P then ?a else ?b): ?A[| ?m : nat; ?n : nat |] ==> ?m #+ ?n : nat?a : ?A ==> Inl(?a) : ?A + ?B \end{ttbox}In typical applications, the goal has the form $t\in\Var{A}$: in other words,we have a specific term~$t$ and need to infer its `type' by instantiating theset variable~$\Var{A}$. Neither the simplifier nor the classical reasonerdoes this job well. The if-then-else rule, and many similar ones, can makethe classical reasoner loop. The simplifier refuses (on principle) toinstantiate variables during rewriting, so goals such as \texttt{i\#+j :\ ?A}are left unsolved.The simplifier calls the type-checker to solve rewritten subgoals: this stagecan indeed instantiate variables. If you have defined new constants andproved type-checking rules for them, then insert the rules using\texttt{AddTCs} and the rest should be automatic. In particular, thesimplifier will use type-checking to help satisfy conditional rewrite rules.Call the tactic \ttindex{Typecheck_tac} to break down all subgoals usingtype-checking rules.Though the easiest way to invoke the type-checker is via the simplifier,specialized applications may require more detailed knowledge ofthe type-checking primitives. They are modelled on the simplifier's:\begin{ttdescription}\item[\ttindexbold{tcset}] is the type of tcsets: sets of type-checking rules.\item[\ttindexbold{addTCs}] is an infix operator to add type-checking rules to a tcset.\item[\ttindexbold{delTCs}] is an infix operator to remove type-checking rules from a tcset.\item[\ttindexbold{typecheck_tac}] is a tactic for attempting to prove all subgoals using the rules given in its argument, a tcset.\end{ttdescription}Tcsets, like simpsets, are associated with theories and are merged whentheories are merged. There are further primitives that use the default tcset.\begin{ttdescription}\item[\ttindexbold{tcset}] is a function to return the default tcset; use the expression \texttt{tcset()}.\item[\ttindexbold{AddTCs}] adds type-checking rules to the default tcset.\item[\ttindexbold{DelTCs}] removes type-checking rules from the default tcset.\item[\ttindexbold{Typecheck_tac}] calls \texttt{typecheck_tac} using the default tcset.\end{ttdescription}To supply some type-checking rules temporarily, using \texttt{Addrules} andlater \texttt{Delrules} is the simplest way. There is also a high-techapproach. Call the simplifier with a new solver expressed using\ttindexbold{type_solver_tac} and your temporary type-checking rules.\begin{ttbox}by (asm_simp_tac (simpset() setSolver type_solver_tac (tcset() addTCs prems)) 2);\end{ttbox}\section{Natural number and integer arithmetic}\index{arithmetic|(}\begin{figure}\small\index{#*@{\tt\#*} symbol}\index{*div symbol}\index{*mod symbol}\index{#+@{\tt\#+} symbol}\index{#-@{\tt\#-} symbol}\begin{constants} \it symbol & \it meta-type & \it priority & \it description \\ \cdx{nat} & $i$ & & set of natural numbers \\ \cdx{nat_case}& $[i,i\To i,i]\To i$ & & conditional for $nat$\\ \tt \#* & $[i,i]\To i$ & Left 70 & multiplication \\ \tt div & $[i,i]\To i$ & Left 70 & division\\ \tt mod & $[i,i]\To i$ & Left 70 & modulus\\ \tt \#+ & $[i,i]\To i$ & Left 65 & addition\\ \tt \#- & $[i,i]\To i$ & Left 65 & subtraction\end{constants}\begin{ttbox}\tdx{nat_def} nat == lfp(lam r: Pow(Inf). {\ttlbrace}0{\ttrbrace} Un {\ttlbrace}succ(x). x:r{\ttrbrace}\tdx{nat_case_def} nat_case(a,b,k) == THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))\tdx{nat_0I} 0 : nat\tdx{nat_succI} n : nat ==> succ(n) : nat\tdx{nat_induct} [| n: nat; P(0); !!x. [| x: nat; P(x) |] ==> P(succ(x)) |] ==> P(n)\tdx{nat_case_0} nat_case(a,b,0) = a\tdx{nat_case_succ} nat_case(a,b,succ(m)) = b(m)\tdx{add_0_natify} 0 #+ n = natify(n)\tdx{add_succ} succ(m) #+ n = succ(m #+ n)\tdx{mult_type} m #* n : nat\tdx{mult_0} 0 #* n = 0\tdx{mult_succ} succ(m) #* n = n #+ (m #* n)\tdx{mult_commute} m #* n = n #* m\tdx{add_mult_dist} (m #+ n) #* k = (m #* k) #+ (n #* k)\tdx{mult_assoc} (m #* n) #* k = m #* (n #* k)\tdx{mod_div_equality} m: nat ==> (m div n)#*n #+ m mod n = m\end{ttbox}\caption{The natural numbers} \label{zf-nat}\end{figure}\index{natural numbers}Theory \thydx{Nat} defines the natural numbers and mathematicalinduction, along with a case analysis operator. The set of naturalnumbers, here called \texttt{nat}, is known in set theory as the ordinal~$\omega$.Theory \thydx{Arith} develops arithmetic on the natural numbers(Fig.\ts\ref{zf-nat}). Addition, multiplication and subtraction are definedby primitive recursion. Division and remainder are defined by repeatedsubtraction, which requires well-founded recursion; the termination argumentrelies on the divisor's being non-zero. Many properties are proved:commutative, associative and distributive laws, identity and cancellationlaws, etc. The most interesting result is perhaps the theorem $a \bmod b +(a/b)\times b = a$.To minimize the need for tedious proofs of $t\in\texttt{nat}$, the arithmeticoperators coerce their arguments to be natural numbers. The function\cdx{natify} is defined such that $\texttt{natify}(n) = n$ if $n$ is a naturalnumber, $\texttt{natify}(\texttt{succ}(x)) =\texttt{succ}(\texttt{natify}(x))$ for all $x$, and finally$\texttt{natify}(x)=0$ in all other cases. The benefit is that the addition,subtraction, multiplication, division and remainder operators always returnnatural numbers, regardless of their arguments. Algebraic laws (commutative,associative, distributive) are unconditional. Occurrences of \texttt{natify}as operands of those operators are simplified away. Any remaining occurrencescan either be tolerated or else eliminated by proving that the argument is anatural number.The simplifier automatically cancels common terms on the opposite sides ofsubtraction and of relations ($=$, $<$ and $\le$). Here is an example:\begin{ttbox} 1. i #+ j #+ k #- j < k #+ l> by (Simp_tac 1); 1. natify(i) < natify(l)\end{ttbox}Given the assumptions \texttt{i:nat} and \texttt{l:nat}, both occurrences of\cdx{natify} would be simplified away.\begin{figure}\small\index{$*@{\tt\$*} symbol}\index{$+@{\tt\$+} symbol}\index{$-@{\tt\$-} symbol}\begin{constants} \it symbol & \it meta-type & \it priority & \it description \\ \cdx{int} & $i$ & & set of integers \\ \tt \$* & $[i,i]\To i$ & Left 70 & multiplication \\ \tt \$+ & $[i,i]\To i$ & Left 65 & addition\\ \tt \$- & $[i,i]\To i$ & Left 65 & subtraction\\ \tt \$< & $[i,i]\To o$ & Left 50 & $<$ on integers\\ \tt \$<= & $[i,i]\To o$ & Left 50 & $\le$ on integers\end{constants}\begin{ttbox}\tdx{zadd_0_intify} 0 $+ n = intify(n)\tdx{zmult_type} m $* n : int\tdx{zmult_0} 0 $* n = 0\tdx{zmult_commute} m $* n = n $* m\tdx{zadd_zmult_dist} (m $+ n) $* k = (m $* k) $+ (n $* k)\tdx{zmult_assoc} (m $* n) $* k = m $* (n $* k)\end{ttbox}\caption{The integers} \label{zf-int}\end{figure}\index{integers}Theory \thydx{Int} defines the integers, as equivalence classes of naturalnumbers. Figure~\ref{zf-int} presents a tidy collection of laws. Infact, a large library of facts is proved, including monotonicity laws foraddition and multiplication, covering both positive and negative operands. As with the natural numbers, the need for typing proofs is minimized. All theoperators defined in Fig.\ts\ref{zf-int} coerce their operands to integers byapplying the function \cdx{intify}. This function is the identity on integersand maps other operands to zero.Decimal notation is provided for the integers. Numbers, written as\texttt{\#$nnn$} or \texttt{\#-$nnn$}, are represented internally intwo's-complement binary. Expressions involving addition, subtraction andmultiplication of numeral constants are evaluated (with acceptable efficiency)by simplification. The simplifier also collects similar terms, multiplyingthem by a numerical coefficient. It also cancels occurrences of the sameterms on the other side of the relational operators. Example:\begin{ttbox} 1. y $+ z $+ #-3 $* x $+ y $<= x $* #2 $+ z> by (Simp_tac 1); 1. #2 $* y $<= #5 $* x\end{ttbox}For more information on the integers, please see the theories on directory\texttt{ZF/Integ}. \index{arithmetic|)}\section{Datatype definitions}\label{sec:ZF:datatype}\index{*datatype|(}The \ttindex{datatype} definition package of ZF constructs inductive datatypessimilar to those of \ML. It can also construct coinductive datatypes(codatatypes), which are non-well-founded structures such as streams. Itdefines the set using a fixed-point construction and proves induction rules,as well as theorems for recursion and case combinators. It suppliesmechanisms for reasoning about freeness. The datatype package can handle bothmutual and indirect recursion.\subsection{Basics}\label{subsec:datatype:basics}A \texttt{datatype} definition has the following form:\[\begin{array}{llcl}\mathtt{datatype} & t@1(A@1,\ldots,A@h) & = & constructor^1@1 ~\mid~ \ldots ~\mid~ constructor^1@{k@1} \\ & & \vdots \\\mathtt{and} & t@n(A@1,\ldots,A@h) & = & constructor^n@1~ ~\mid~ \ldots ~\mid~ constructor^n@{k@n}\end{array}\]Here $t@1$, \ldots,~$t@n$ are identifiers and $A@1$, \ldots,~$A@h$ arevariables: the datatype's parameters. Each constructor specification has theform \dquotesoff\[ C \hbox{\tt~( } \hbox{\tt"} x@1 \hbox{\tt:} T@1 \hbox{\tt"},\; \ldots,\; \hbox{\tt"} x@m \hbox{\tt:} T@m \hbox{\tt"} \hbox{\tt~)}\]Here $C$ is the constructor name, and variables $x@1$, \ldots,~$x@m$ are theconstructor arguments, belonging to the sets $T@1$, \ldots, $T@m$,respectively. Typically each $T@j$ is either a constant set, a datatypeparameter (one of $A@1$, \ldots, $A@h$) or a recursive occurrence of one ofthe datatypes, say $t@i(A@1,\ldots,A@h)$. More complex possibilities exist,but they are much harder to realize. Often, additional information must besupplied in the form of theorems.A datatype can occur recursively as the argument of some function~$F$. Thisis called a {\em nested} (or \emph{indirect}) occurrence. It is only allowedif the datatype package is given a theorem asserting that $F$ is monotonic.If the datatype has indirect occurrences, then Isabelle/ZF does not supportrecursive function definitions.A simple example of a datatype is \texttt{list}, which is built-in, and isdefined by\begin{ttbox}consts list :: i=>idatatype "list(A)" = Nil | Cons ("a:A", "l: list(A)")\end{ttbox}Note that the datatype operator must be declared as a constant first.However, the package declares the constructors. Here, \texttt{Nil} gets type$i$ and \texttt{Cons} gets type $[i,i]\To i$.Trees and forests can be modelled by the mutually recursive datatypedefinition\begin{ttbox}consts tree, forest, tree_forest :: i=>idatatype "tree(A)" = Tcons ("a: A", "f: forest(A)")and "forest(A)" = Fnil | Fcons ("t: tree(A)", "f: forest(A)")\end{ttbox}Here $\texttt{tree}(A)$ is the set of trees over $A$, $\texttt{forest}(A)$ isthe set of forests over $A$, and $\texttt{tree_forest}(A)$ is the union ofthe previous two sets. All three operators must be declared first.The datatype \texttt{term}, which is defined by\begin{ttbox}consts term :: i=>idatatype "term(A)" = Apply ("a: A", "l: list(term(A))") monos "[list_mono]"\end{ttbox}is an example of nested recursion. (The theorem \texttt{list_mono} is provedin file \texttt{List.ML}, and the \texttt{term} example is devaloped in theory\thydx{ex/Term}.)\subsubsection{Freeness of the constructors}Constructors satisfy {\em freeness} properties. Constructions are distinct,for example $\texttt{Nil}\not=\texttt{Cons}(a,l)$, and they are injective, forexample $\texttt{Cons}(a,l)=\texttt{Cons}(a',l') \bimp a=a' \conj l=l'$.Because the number of freeness is quadratic in the number of constructors, thedatatype package does not prove them. Instead, it ensures that simplificationwill prove them dynamically: when the simplifier encounters a formulaasserting the equality of two datatype constructors, it performs freenessreasoning. Freeness reasoning can also be done using the classical reasoner, but it ismore complicated. You have to add some safe elimination rules rules to theclaset. For the \texttt{list} datatype, they are called\texttt{list.free_SEs}. Occasionally this exposes the underlyingrepresentation of some constructor, which can be rectified using the command\hbox{\tt fold_tac list.con_defs}.\subsubsection{Structural induction}The datatype package also provides structural induction rules. For datatypeswithout mutual or nested recursion, the rule has the form exemplified by\texttt{list.induct} in Fig.\ts\ref{zf-list}. For mutually recursivedatatypes, the induction rule is supplied in two forms. Consider datatype\texttt{TF}. The rule \texttt{tree_forest.induct} performs induction over asingle predicate~\texttt{P}, which is presumed to be defined for both treesand forests:\begin{ttbox}[| x : tree_forest(A); !!a f. [| a : A; f : forest(A); P(f) |] ==> P(Tcons(a, f)); P(Fnil); !!f t. [| t : tree(A); P(t); f : forest(A); P(f) |] ==> P(Fcons(t, f)) |] ==> P(x)\end{ttbox}The rule \texttt{tree_forest.mutual_induct} performs induction over twodistinct predicates, \texttt{P_tree} and \texttt{P_forest}.\begin{ttbox}[| !!a f. [| a : A; f : forest(A); P_forest(f) |] ==> P_tree(Tcons(a, f)); P_forest(Fnil); !!f t. [| t : tree(A); P_tree(t); f : forest(A); P_forest(f) |] ==> P_forest(Fcons(t, f)) |] ==> (ALL za. za : tree(A) --> P_tree(za)) & (ALL za. za : forest(A) --> P_forest(za))\end{ttbox}For datatypes with nested recursion, such as the \texttt{term} example fromabove, things are a bit more complicated. The rule \texttt{term.induct}refers to the monotonic operator, \texttt{list}:\begin{ttbox}[| x : term(A); !!a l. [| a: A; l: list(Collect(term(A), P)) |] ==> P(Apply(a, l)) |] ==> P(x)\end{ttbox}The file \texttt{ex/Term.ML} derives two higher-level induction rules, one ofwhich is particularly useful for proving equations:\begin{ttbox}[| t : term(A); !!x zs. [| x : A; zs : list(term(A)); map(f, zs) = map(g, zs) |] ==> f(Apply(x, zs)) = g(Apply(x, zs)) |] ==> f(t) = g(t) \end{ttbox}How this can be generalized to other nested datatypes is a matter for futureresearch.\subsubsection{The \texttt{case} operator}The package defines an operator for performing case analysis over thedatatype. For \texttt{list}, it is called \texttt{list_case} and satisfiesthe equations\begin{ttbox}list_case(f_Nil, f_Cons, []) = f_Nillist_case(f_Nil, f_Cons, Cons(a, l)) = f_Cons(a, l)\end{ttbox}Here \texttt{f_Nil} is the value to return if the argument is \texttt{Nil} and\texttt{f_Cons} is a function that computes the value to return if theargument has the form $\texttt{Cons}(a,l)$. The function can be expressed asan abstraction, over patterns if desired (\S\ref{sec:pairs}).For mutually recursive datatypes, there is a single \texttt{case} operator.In the tree/forest example, the constant \texttt{tree_forest_case} handles allof the constructors of the two datatypes.\subsection{Defining datatypes}The theory syntax for datatype definitions is shown inFig.~\ref{datatype-grammar}. In order to be well-formed, a datatypedefinition has to obey the rules stated in the previous section. As a resultthe theory is extended with the new types, the constructors, and the theoremslisted in the previous section. The quotation marks are necessary becausethey enclose general Isabelle formul\ae.\begin{figure}\begin{rail}datatype : ( 'datatype' | 'codatatype' ) datadecls;datadecls: ( '"' id arglist '"' '=' (constructor + '|') ) + 'and' ;constructor : name ( () | consargs ) ( () | ( '(' mixfix ')' ) ) ;consargs : '(' ('"' var ':' term '"' + ',') ')' ;\end{rail}\caption{Syntax of datatype declarations}\label{datatype-grammar}\end{figure}Codatatypes are declared like datatypes and are identical to them in everyrespect except that they have a coinduction rule instead of an induction rule.Note that while an induction rule has the effect of limiting the valuescontained in the set, a coinduction rule gives a way of constructing newvalues of the set.Most of the theorems about datatypes become part of the default simpset. Younever need to see them again because the simplifier applies themautomatically. Induction or exhaustion are usually invoked by hand,usually via these special-purpose tactics:\begin{ttdescription}\item[\ttindexbold{induct_tac} {\tt"}$x${\tt"} $i$] applies structural induction on variable $x$ to subgoal $i$, provided the type of $x$ is a datatype. The induction variable should not occur among other assumptions of the subgoal.\end{ttdescription}In some cases, induction is overkill and a case distinction over allconstructors of the datatype suffices.\begin{ttdescription}\item[\ttindexbold{exhaust_tac} {\tt"}$x${\tt"} $i$] performs an exhaustive case analysis for the variable~$x$.\end{ttdescription}Both tactics can only be applied to a variable, whose typing must be given insome assumption, for example the assumption \texttt{x:\ list(A)}. The tacticsalso work for the natural numbers (\texttt{nat}) and disjoint sums, althoughthese sets were not defined using the datatype package. (Disjoint sums arenot recursive, so only \texttt{exhaust_tac} is available.)\bigskipHere are some more details for the technically minded. Processing thetheory file produces an \ML\ structure which, in addition to the usualcomponents, contains a structure named $t$ for each datatype $t$ defined inthe file. Each structure $t$ contains the following elements:\begin{ttbox}val intrs : thm list \textrm{the introduction rules}val elim : thm \textrm{the elimination (case analysis) rule}val induct : thm \textrm{the standard induction rule}val mutual_induct : thm \textrm{the mutual induction rule, or \texttt{True}}val case_eqns : thm list \textrm{equations for the case operator}val recursor_eqns : thm list \textrm{equations for the recursor}val con_defs : thm list \textrm{definitions of the case operator and constructors}val free_iffs : thm list \textrm{logical equivalences for proving freeness}val free_SEs : thm list \textrm{elimination rules for proving freeness}val mk_free : string -> thm \textrm{A function for proving freeness theorems}val mk_cases : string -> thm \textrm{case analysis, see below}val defs : thm list \textrm{definitions of operators}val bnd_mono : thm list \textrm{monotonicity property}val dom_subset : thm list \textrm{inclusion in `bounding set'}\end{ttbox}Furthermore there is the theorem $C$\texttt{_I} for every constructor~$C$; forexample, the \texttt{list} datatype's introduction rules are bound to theidentifiers \texttt{Nil_I} and \texttt{Cons_I}.For a codatatype, the component \texttt{coinduct} is the coinduction rule,replacing the \texttt{induct} component.See the theories \texttt{ex/Ntree} and \texttt{ex/Brouwer} for examples ofinfinitely branching datatypes. See theory \texttt{ex/LList} for an exampleof a codatatype. Some of these theories illustrate the use of additional,undocumented features of the datatype package. Datatype definitions arereduced to inductive definitions, and the advanced features should beunderstood in that light.\subsection{Examples}\subsubsection{The datatype of binary trees}Let us define the set $\texttt{bt}(A)$ of binary trees over~$A$. The theorymust contain these lines:\begin{ttbox}consts bt :: i=>idatatype "bt(A)" = Lf | Br ("a: A", "t1: bt(A)", "t2: bt(A)")\end{ttbox}After loading the theory, we can prove, for example, that no tree equals itsleft branch. To ease the induction, we state the goal using quantifiers.\begin{ttbox}Goal "l : bt(A) ==> ALL x r. Br(x,l,r) ~= l";{\out Level 0}{\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}{\out 1. l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}\end{ttbox}This can be proved by the structural induction tactic:\begin{ttbox}by (induct_tac "l" 1);{\out Level 1}{\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}{\out 1. ALL x r. Br(x, Lf, r) ~= Lf}{\out 2. !!a t1 t2.}{\out [| a : A; t1 : bt(A);}{\out ALL x r. Br(x, t1, r) ~= t1; t2 : bt(A);}{\out ALL x r. Br(x, t2, r) ~= t2 |]}{\out ==> ALL x r. Br(x, Br(a, t1, t2), r) ~= Br(a, t1, t2)}\end{ttbox}Both subgoals are proved using \texttt{Auto_tac}, which performs the necessaryfreeness reasoning. \begin{ttbox}by Auto_tac;{\out Level 2}{\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}{\out No subgoals!}\end{ttbox}To remove the quantifiers from the induction formula, we save the theorem using\ttindex{qed_spec_mp}.\begin{ttbox}qed_spec_mp "Br_neq_left";{\out val Br_neq_left = "?l : bt(?A) ==> Br(?x, ?l, ?r) ~= ?l" : thm}\end{ttbox}When there are only a few constructors, we might prefer to prove the freennesstheorems for each constructor. This is trivial, using the function given usfor that purpose:\begin{ttbox}val Br_iff = bt.mk_free "Br(a,l,r)=Br(a',l',r') <-> a=a' & l=l' & r=r'";{\out val Br_iff =}{\out "Br(?a, ?l, ?r) = Br(?a', ?l', ?r') <->}{\out ?a = ?a' & ?l = ?l' & ?r = ?r'" : thm}\end{ttbox}The purpose of \ttindex{mk_cases} is to generate instances of the elimination(case analysis) rule that have been simplified using freeness reasoning. Forexample, this instance of the elimination rule propagates type-checkinginformation from the premise $\texttt{Br}(a,l,r)\in\texttt{bt}(A)$:\begin{ttbox}val BrE = bt.mk_cases "Br(a,l,r) : bt(A)";{\out val BrE =}{\out "[| Br(?a, ?l, ?r) : bt(?A);}{\out [| ?a : ?A; ?l : bt(?A); ?r : bt(?A) |] ==> ?Q |]}{\out ==> ?Q" : thm}\end{ttbox}\subsubsection{Mixfix syntax in datatypes}Mixfix syntax is sometimes convenient. The theory \texttt{ex/PropLog} makes adeep embedding of propositional logic:\begin{ttbox}consts prop :: idatatype "prop" = Fls | Var ("n: nat") ("#_" [100] 100) | "=>" ("p: prop", "q: prop") (infixr 90)\end{ttbox}The second constructor has a special $\#n$ syntax, while the third constructoris an infixed arrow.\subsubsection{A giant enumeration type}This example shows a datatype that consists of 60 constructors:\begin{ttbox}consts enum :: idatatype "enum" = C00 | C01 | C02 | C03 | C04 | C05 | C06 | C07 | C08 | C09 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 | C21 | C22 | C23 | C24 | C25 | C26 | C27 | C28 | C29 | C30 | C31 | C32 | C33 | C34 | C35 | C36 | C37 | C38 | C39 | C40 | C41 | C42 | C43 | C44 | C45 | C46 | C47 | C48 | C49 | C50 | C51 | C52 | C53 | C54 | C55 | C56 | C57 | C58 | C59end\end{ttbox}The datatype package scales well. Even though all properties are provedrather than assumed, full processing of this definition takes under 15 seconds(on a 300 MHz Pentium). The constructors have a balanced representation,essentially binary notation, so freeness properties can be proved fast.\begin{ttbox}Goal "C00 ~= C01";by (Simp_tac 1);\end{ttbox}You need not derive such inequalities explicitly. The simplifier will disposeof them automatically.\index{*datatype|)}\subsection{Recursive function definitions}\label{sec:ZF:recursive}\index{recursive functions|see{recursion}}\index{*primrec|(}\index{recursion!primitive|(}Datatypes come with a uniform way of defining functions, {\bf primitive recursion}. Such definitions rely on the recursion operator defined by thedatatype package. Isabelle proves the desired recursion equations astheorems.In principle, one could introduce primitive recursive functions by assertingtheir reduction rules as new axioms. Here is a dangerous way of defining theappend function for lists:\begin{ttbox}\slshapeconsts "\at" :: [i,i]=>i (infixr 60)rules app_Nil "[] \at ys = ys" app_Cons "(Cons(a,l)) \at ys = Cons(a, l \at ys)"\end{ttbox}Asserting axioms brings the danger of accidentally asserting nonsense. Itshould be avoided at all costs!The \ttindex{primrec} declaration is a safe means of defining primitiverecursive functions on datatypes:\begin{ttbox}consts "\at" :: [i,i]=>i (infixr 60)primrec "[] \at ys = ys" "(Cons(a,l)) \at ys = Cons(a, l \at ys)"\end{ttbox}Isabelle will now check that the two rules do indeed form a primitiverecursive definition. For example, the declaration\begin{ttbox}primrec "[] \at ys = us"\end{ttbox}is rejected with an error message ``\texttt{Extra variables on rhs}''.\subsubsection{Syntax of recursive definitions}The general form of a primitive recursive definition is\begin{ttbox}primrec {\it reduction rules}\end{ttbox}where \textit{reduction rules} specify one or more equations of the form\[ f \, x@1 \, \dots \, x@m \, (C \, y@1 \, \dots \, y@k) \, z@1 \,\dots \, z@n = r \] such that $C$ is a constructor of the datatype, $r$contains only the free variables on the left-hand side, and all recursivecalls in $r$ are of the form $f \, \dots \, y@i \, \dots$ for some $i$. There must be at most one reduction rule for each constructor. The order isimmaterial. For missing constructors, the function is defined to return zero.All reduction rules are added to the default simpset.If you would like to refer to some rule by name, then you must prefixthe rule with an identifier. These identifiers, like those in the\texttt{rules} section of a theory, will be visible at the \ML\ level.The reduction rules for {\tt\at} become part of the default simpset, whichleads to short proof scripts:\begin{ttbox}\underscoreonGoal "xs: list(A) ==> (xs @ ys) @ zs = xs @ (ys @ zs)";by (induct\_tac "xs" 1);by (ALLGOALS Asm\_simp\_tac);\end{ttbox}You can even use the \texttt{primrec} form with non-recursive datatypes andwith codatatypes. Recursion is not allowed, but it provides a convenientsyntax for defining functions by cases.\subsubsection{Example: varying arguments}All arguments, other than the recursive one, must be the same in each equationand in each recursive call. To get around this restriction, use explict$\lambda$-abstraction and function application. Here is an example, drawnfrom the theory \texttt{Resid/Substitution}. The type of redexes is declaredas follows:\begin{ttbox}consts redexes :: idatatype "redexes" = Var ("n: nat") | Fun ("t: redexes") | App ("b:bool" ,"f:redexes" , "a:redexes")\end{ttbox}The function \texttt{lift} takes a second argument, $k$, which varies inrecursive calls.\begin{ttbox}primrec "lift(Var(i)) = (lam k:nat. if i<k then Var(i) else Var(succ(i)))" "lift(Fun(t)) = (lam k:nat. Fun(lift(t) ` succ(k)))" "lift(App(b,f,a)) = (lam k:nat. App(b, lift(f)`k, lift(a)`k))"\end{ttbox}Now \texttt{lift(r)`k} satisfies the required recursion equations.\index{recursion!primitive|)}\index{*primrec|)}\section{Inductive and coinductive definitions}\index{*inductive|(}\index{*coinductive|(}An {\bf inductive definition} specifies the least set~$R$ closed under givenrules. (Applying a rule to elements of~$R$ yields a result within~$R$.) Forexample, a structural operational semantics is an inductive definition of anevaluation relation. Dually, a {\bf coinductive definition} specifies thegreatest set~$R$ consistent with given rules. (Every element of~$R$ can beseen as arising by applying a rule to elements of~$R$.) An important exampleis using bisimulation relations to formalise equivalence of processes andinfinite data structures.A theory file may contain any number of inductive and coinductivedefinitions. They may be intermixed with other declarations; inparticular, the (co)inductive sets {\bf must} be declared separately asconstants, and may have mixfix syntax or be subject to syntax translations.Each (co)inductive definition adds definitions to the theory and alsoproves some theorems. Each definition creates an \ML\ structure, which is asubstructure of the main theory structure.This package is described in detail in a separate paper,%\footnote{It appeared in CADE~\cite{paulson-CADE}; a longer version is distributed with Isabelle as \emph{A Fixedpoint Approach to (Co)Inductive and (Co)Datatype Definitions}.} %which you might refer to for background information.\subsection{The syntax of a (co)inductive definition}An inductive definition has the form\begin{ttbox}inductive domains {\it domain declarations} intrs {\it introduction rules} monos {\it monotonicity theorems} con_defs {\it constructor definitions} type_intrs {\it introduction rules for type-checking} type_elims {\it elimination rules for type-checking}\end{ttbox}A coinductive definition is identical, but starts with the keyword{\tt co\-inductive}. The {\tt monos}, {\tt con\_defs}, {\tt type\_intrs} and {\tt type\_elims}sections are optional. If present, each is specified either as a list ofidentifiers or as a string. If the latter, then the string must be a valid\textsc{ml} expression of type {\tt thm list}. The string is simply insertedinto the {\tt _thy.ML} file; if it is ill-formed, it will trigger \textsc{ml}error messages. You can then inspect the file on the temporary directory.\begin{description}\item[\it domain declarations] are items of the form {\it string\/}~{\tt <=}~{\it string}, associating each recursive set with its domain. (The domain is some existing set that is large enough to hold the new set being defined.)\item[\it introduction rules] specify one or more introduction rules in the form {\it ident\/}~{\it string}, where the identifier gives the name of the rule in the result structure.\item[\it monotonicity theorems] are required for each operator applied to a recursive set in the introduction rules. There \textbf{must} be a theorem of the form $A\subseteq B\Imp M(A)\subseteq M(B)$, for each premise $t\in M(R_i)$ in an introduction rule!\item[\it constructor definitions] contain definitions of constants appearing in the introduction rules. The (co)datatype package supplies the constructors' definitions here. Most (co)inductive definitions omit this section; one exception is the primitive recursive functions example; see theory \texttt{ex/Primrec}.\item[\it type\_intrs] consists of introduction rules for type-checking the definition: for demonstrating that the new set is included in its domain. (The proof uses depth-first search.)\item[\it type\_elims] consists of elimination rules for type-checking the definition. They are presumed to be safe and are applied as often as possible prior to the {\tt type\_intrs} search.\end{description}The package has a few restrictions:\begin{itemize}\item The theory must separately declare the recursive sets as constants.\item The names of the recursive sets must be identifiers, not infixoperators. \item Side-conditions must not be conjunctions. However, an introduction rulemay contain any number of side-conditions.\item Side-conditions of the form $x=t$, where the variable~$x$ does not occur in~$t$, will be substituted through the rule \verb|mutual_induct|.\end{itemize}\subsection{Example of an inductive definition}Two declarations, included in a theory file, define the finite powersetoperator. First we declare the constant~\texttt{Fin}. Then we declare itinductively, with two introduction rules:\begin{ttbox}consts Fin :: i=>iinductive domains "Fin(A)" <= "Pow(A)" intrs emptyI "0 : Fin(A)" consI "[| a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)" type_intrs empty_subsetI, cons_subsetI, PowI type_elims "[make_elim PowD]"\end{ttbox}The resulting theory structure contains a substructure, called~\texttt{Fin}.It contains the \texttt{Fin}$~A$ introduction rules as the list\texttt{Fin.intrs}, and also individually as \texttt{Fin.emptyI} and\texttt{Fin.consI}. The induction rule is \texttt{Fin.induct}.The chief problem with making (co)inductive definitions involves type-checkingthe rules. Sometimes, additional theorems need to be supplied under\texttt{type_intrs} or \texttt{type_elims}. If the package fails when tryingto prove your introduction rules, then set the flag \ttindexbold{trace_induct}to \texttt{true} and try again. (See the manual \emph{A Fixedpoint Approach \ldots} for more discussion of type-checking.)In the example above, $\texttt{Pow}(A)$ is given as the domain of$\texttt{Fin}(A)$, for obviously every finite subset of~$A$ is a subsetof~$A$. However, the inductive definition package can only prove that given afew hints.Here is the output that results (with the flag set) when the\texttt{type_intrs} and \texttt{type_elims} are omitted from the inductivedefinition above:\begin{ttbox}Inductive definition Finite.FinFin(A) ==lfp(Pow(A), \%X. {z: Pow(A) . z = 0 | (EX a b. z = cons(a, b) & a : A & b : X)}) Proving monotonicity...\ttbreak Proving the introduction rules...The type-checking subgoal:0 : Fin(A) 1. 0 : Pow(A)\ttbreakThe subgoal after monos, type_elims:0 : Fin(A) 1. 0 : Pow(A)*** prove_goal: tactic failed\end{ttbox}We see the need to supply theorems to let the package prove$\emptyset\in\texttt{Pow}(A)$. Restoring the \texttt{type_intrs} but not the\texttt{type_elims}, we again get an error message:\begin{ttbox}The type-checking subgoal:0 : Fin(A) 1. 0 : Pow(A)\ttbreakThe subgoal after monos, type_elims:0 : Fin(A) 1. 0 : Pow(A)\ttbreakThe type-checking subgoal:cons(a, b) : Fin(A) 1. [| a : A; b : Fin(A) |] ==> cons(a, b) : Pow(A)\ttbreakThe subgoal after monos, type_elims:cons(a, b) : Fin(A) 1. [| a : A; b : Pow(A) |] ==> cons(a, b) : Pow(A)*** prove_goal: tactic failed\end{ttbox}The first rule has been type-checked, but the second one has failed. Thesimplest solution to such problems is to prove the failed subgoal separatelyand to supply it under \texttt{type_intrs}. The solution actually used isto supply, under \texttt{type_elims}, a rule that changes$b\in\texttt{Pow}(A)$ to $b\subseteq A$; together with \texttt{cons_subsetI}and \texttt{PowI}, it is enough to complete the type-checking.\subsection{Further examples}An inductive definition may involve arbitrary monotonic operators. Here is astandard example: the accessible part of a relation. Note the useof~\texttt{Pow} in the introduction rule and the corresponding mention of therule \verb|Pow_mono| in the \texttt{monos} list. If the desired rule has auniversally quantified premise, usually the effect can be obtained using\texttt{Pow}.\begin{ttbox}consts acc :: i=>iinductive domains "acc(r)" <= "field(r)" intrs vimage "[| r-``{a}: Pow(acc(r)); a: field(r) |] ==> a: acc(r)" monos Pow_mono\end{ttbox}Finally, here is a coinductive definition. It captures (as a bisimulation)the notion of equality on lazy lists, which are first defined as a codatatype:\begin{ttbox}consts llist :: i=>icodatatype "llist(A)" = LNil | LCons ("a: A", "l: llist(A)")\ttbreakconsts lleq :: i=>icoinductive domains "lleq(A)" <= "llist(A) * llist(A)" intrs LNil "<LNil, LNil> : lleq(A)" LCons "[| a:A; <l,l'>: lleq(A) |] ==> <LCons(a,l), LCons(a,l')>: lleq(A)" type_intrs "llist.intrs"\end{ttbox}This use of \texttt{type_intrs} is typical: the relation concerns thecodatatype \texttt{llist}, so naturally the introduction rules for thatcodatatype will be required for type-checking the rules.The Isabelle distribution contains many other inductive definitions. Simpleexamples are collected on subdirectory \texttt{ZF/ex}. The directory\texttt{Coind} and the theory \texttt{ZF/ex/LList} contain coinductivedefinitions. Larger examples may be found on other subdirectories of\texttt{ZF}, such as \texttt{IMP}, and \texttt{Resid}.\subsection{The result structure}Each (co)inductive set defined in a theory file generates an \ML\ substructurehaving the same name. The the substructure contains the following elements:\begin{ttbox}val intrs : thm list \textrm{the introduction rules}val elim : thm \textrm{the elimination (case analysis) rule}val mk_cases : string -> thm \textrm{case analysis, see below}val induct : thm \textrm{the standard induction rule}val mutual_induct : thm \textrm{the mutual induction rule, or \texttt{True}}val defs : thm list \textrm{definitions of operators}val bnd_mono : thm list \textrm{monotonicity property}val dom_subset : thm list \textrm{inclusion in `bounding set'}\end{ttbox}Furthermore there is the theorem $C$\texttt{_I} for every constructor~$C$; forexample, the \texttt{list} datatype's introduction rules are bound to theidentifiers \texttt{Nil_I} and \texttt{Cons_I}.For a codatatype, the component \texttt{coinduct} is the coinduction rule,replacing the \texttt{induct} component.Recall that \ttindex{mk_cases} generates simplified instances of theelimination (case analysis) rule. It is as useful for inductive definitionsas it is for datatypes. There are many examples in the theory\texttt{ex/Comb}, which is discussed at lengthelsewhere~\cite{paulson-generic}. The theory first defines the datatype\texttt{comb} of combinators:\begin{ttbox}consts comb :: idatatype "comb" = K | S | "#" ("p: comb", "q: comb") (infixl 90)\end{ttbox}The theory goes on to define contraction and parallel contractioninductively. Then the file \texttt{ex/Comb.ML} defines special cases ofcontraction using \texttt{mk_cases}:\begin{ttbox}val K_contractE = contract.mk_cases "K -1-> r";{\out val K_contractE = "K -1-> ?r ==> ?Q" : thm}\end{ttbox}We can read this as saying that the combinator \texttt{K} cannot reduce toanything. Similar elimination rules for \texttt{S} and application are alsogenerated and are supplied to the classical reasoner. Note that\texttt{comb.con_defs} is given to \texttt{mk_cases} to allow freenessreasoning on datatype \texttt{comb}.\index{*coinductive|)} \index{*inductive|)}\section{The outer reaches of set theory}The constructions of the natural numbers and lists use a suite ofoperators for handling recursive function definitions. I have describedthe developments in detail elsewhere~\cite{paulson-set-II}. Here is a briefsummary:\begin{itemize} \item Theory \texttt{Trancl} defines the transitive closure of a relation (as a least fixedpoint). \item Theory \texttt{WF} proves the Well-Founded Recursion Theorem, using an elegant approach of Tobias Nipkow. This theorem permits general recursive definitions within set theory. \item Theory \texttt{Ord} defines the notions of transitive set and ordinal number. It derives transfinite induction. A key definition is {\bf less than}: $i<j$ if and only if $i$ and $j$ are both ordinals and $i\in j$. As a special case, it includes less than on the natural numbers. \item Theory \texttt{Epsilon} derives $\varepsilon$-induction and $\varepsilon$-recursion, which are generalisations of transfinite induction and recursion. It also defines \cdx{rank}$(x)$, which is the least ordinal $\alpha$ such that $x$ is constructed at stage $\alpha$ of the cumulative hierarchy (thus $x\in V@{\alpha+1}$).\end{itemize}Other important theories lead to a theory of cardinal numbers. They havenot yet been written up anywhere. Here is a summary:\begin{itemize}\item Theory \texttt{Rel} defines the basic properties of relations, such as (ir)reflexivity, (a)symmetry, and transitivity.\item Theory \texttt{EquivClass} develops a theory of equivalence classes, not using the Axiom of Choice.\item Theory \texttt{Order} defines partial orderings, total orderings and wellorderings.\item Theory \texttt{OrderArith} defines orderings on sum and product sets. These can be used to define ordinal arithmetic and have applications to cardinal arithmetic.\item Theory \texttt{OrderType} defines order types. Every wellordering is equivalent to a unique ordinal, which is its order type.\item Theory \texttt{Cardinal} defines equipollence and cardinal numbers.\item Theory \texttt{CardinalArith} defines cardinal addition and multiplication, and proves their elementary laws. It proves that there is no greatest cardinal. It also proves a deep result, namely $\kappa\otimes\kappa=\kappa$ for every infinite cardinal~$\kappa$; see Kunen~\cite[page 29]{kunen80}. None of these results assume the Axiom of Choice, which complicates their proofs considerably. \end{itemize}The following developments involve the Axiom of Choice (AC):\begin{itemize}\item Theory \texttt{AC} asserts the Axiom of Choice and proves some simple equivalent forms.\item Theory \texttt{Zorn} proves Hausdorff's Maximal Principle, Zorn's Lemma and the Wellordering Theorem, following Abrial and Laffitte~\cite{abrial93}.\item Theory \verb|Cardinal_AC| uses AC to prove simplified theorems about the cardinals. It also proves a theorem needed to justify infinitely branching datatype declarations: if $\kappa$ is an infinite cardinal and $|X(\alpha)| \le \kappa$ for all $\alpha<\kappa$ then $|\union\sb{\alpha<\kappa} X(\alpha)| \le \kappa$.\item Theory \texttt{InfDatatype} proves theorems to justify infinitely branching datatypes. Arbitrary index sets are allowed, provided their cardinalities have an upper bound. The theory also justifies some unusual cases of finite branching, involving the finite powerset operator and the finite function space operator.\end{itemize}\section{The examples directories}Directory \texttt{HOL/IMP} contains a mechanised version of a semanticequivalence proof taken from Winskel~\cite{winskel93}. It formalises thedenotational and operational semantics of a simple while-language, thenproves the two equivalent. It contains several datatype and inductivedefinitions, and demonstrates their use.The directory \texttt{ZF/ex} contains further developments in ZF set theory.Here is an overview; see the files themselves for more details. I describemuch of this material in otherpublications~\cite{paulson-set-I,paulson-set-II,paulson-CADE}.\begin{itemize}\item File \texttt{misc.ML} contains miscellaneous examples such as Cantor's Theorem, the Schr\"oder-Bernstein Theorem and the `Composition of homomorphisms' challenge~\cite{boyer86}.\item Theory \texttt{Ramsey} proves the finite exponent 2 version of Ramsey's Theorem, following Basin and Kaufmann's presentation~\cite{basin91}.\item Theory \texttt{Integ} develops a theory of the integers as equivalence classes of pairs of natural numbers.\item Theory \texttt{Primrec} develops some computation theory. It inductively defines the set of primitive recursive functions and presents a proof that Ackermann's function is not primitive recursive.\item Theory \texttt{Primes} defines the Greatest Common Divisor of two natural numbers and and the ``divides'' relation.\item Theory \texttt{Bin} defines a datatype for two's complement binary integers, then proves rewrite rules to perform binary arithmetic. For instance, $1359\times {-}2468 = {-}3354012$ takes under 14 seconds.\item Theory \texttt{BT} defines the recursive data structure ${\tt bt}(A)$, labelled binary trees.\item Theory \texttt{Term} defines a recursive data structure for terms and term lists. These are simply finite branching trees.\item Theory \texttt{TF} defines primitives for solving mutually recursive equations over sets. It constructs sets of trees and forests as an example, including induction and recursion rules that handle the mutual recursion.\item Theory \texttt{Prop} proves soundness and completeness of propositional logic~\cite{paulson-set-II}. This illustrates datatype definitions, inductive definitions, structural induction and rule induction.\item Theory \texttt{ListN} inductively defines the lists of $n$ elements~\cite{paulin-tlca}.\item Theory \texttt{Acc} inductively defines the accessible part of a relation~\cite{paulin-tlca}.\item Theory \texttt{Comb} defines the datatype of combinators and inductively defines contraction and parallel contraction. It goes on to prove the Church-Rosser Theorem. This case study follows Camilleri and Melham~\cite{camilleri92}.\item Theory \texttt{LList} defines lazy lists and a coinduction principle for proving equations between them.\end{itemize}\section{A proof about powersets}\label{sec:ZF-pow-example}To demonstrate high-level reasoning about subsets, let us prove theequation ${{\tt Pow}(A)\cap {\tt Pow}(B)}= {\tt Pow}(A\cap B)$. Comparedwith first-order logic, set theory involves a maze of rules, and theoremshave many different proofs. Attempting other proofs of the theorem mightbe instructive. This proof exploits the lattice properties ofintersection. It also uses the monotonicity of the powerset operation,from \texttt{ZF/mono.ML}:\begin{ttbox}\tdx{Pow_mono} A<=B ==> Pow(A) <= Pow(B)\end{ttbox}We enter the goal and make the first step, which breaks the equation intotwo inclusions by extensionality:\index{*equalityI theorem}\begin{ttbox}Goal "Pow(A Int B) = Pow(A) Int Pow(B)";{\out Level 0}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out 1. Pow(A Int B) = Pow(A) Int Pow(B)}\ttbreakby (resolve_tac [equalityI] 1);{\out Level 1}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out 1. Pow(A Int B) <= Pow(A) Int Pow(B)}{\out 2. Pow(A) Int Pow(B) <= Pow(A Int B)}\end{ttbox}Both inclusions could be tackled straightforwardly using \texttt{subsetI}.A shorter proof results from noting that intersection forms the greatestlower bound:\index{*Int_greatest theorem}\begin{ttbox}by (resolve_tac [Int_greatest] 1);{\out Level 2}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out 1. Pow(A Int B) <= Pow(A)}{\out 2. Pow(A Int B) <= Pow(B)}{\out 3. Pow(A) Int Pow(B) <= Pow(A Int B)}\end{ttbox}Subgoal~1 follows by applying the monotonicity of \texttt{Pow} to $A\intB\subseteq A$; subgoal~2 follows similarly:\index{*Int_lower1 theorem}\index{*Int_lower2 theorem}\begin{ttbox}by (resolve_tac [Int_lower1 RS Pow_mono] 1);{\out Level 3}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out 1. Pow(A Int B) <= Pow(B)}{\out 2. Pow(A) Int Pow(B) <= Pow(A Int B)}\ttbreakby (resolve_tac [Int_lower2 RS Pow_mono] 1);{\out Level 4}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out 1. Pow(A) Int Pow(B) <= Pow(A Int B)}\end{ttbox}We are left with the opposite inclusion, which we tackle in thestraightforward way:\index{*subsetI theorem}\begin{ttbox}by (resolve_tac [subsetI] 1);{\out Level 5}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out 1. !!x. x : Pow(A) Int Pow(B) ==> x : Pow(A Int B)}\end{ttbox}The subgoal is to show $x\in {\tt Pow}(A\cap B)$ assuming $x\in{\ttPow}(A)\cap {\tt Pow}(B)$; eliminating this assumption produces twosubgoals. The rule \tdx{IntE} treats the intersection like a conjunctioninstead of unfolding its definition.\begin{ttbox}by (eresolve_tac [IntE] 1);{\out Level 6}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out 1. !!x. [| x : Pow(A); x : Pow(B) |] ==> x : Pow(A Int B)}\end{ttbox}The next step replaces the \texttt{Pow} by the subsetrelation~($\subseteq$).\index{*PowI theorem}\begin{ttbox}by (resolve_tac [PowI] 1);{\out Level 7}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out 1. !!x. [| x : Pow(A); x : Pow(B) |] ==> x <= A Int B}\end{ttbox}We perform the same replacement in the assumptions. This is a gooddemonstration of the tactic \ttindex{dresolve_tac}:\index{*PowD theorem}\begin{ttbox}by (REPEAT (dresolve_tac [PowD] 1));{\out Level 8}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out 1. !!x. [| x <= A; x <= B |] ==> x <= A Int B}\end{ttbox}The assumptions are that $x$ is a lower bound of both $A$ and~$B$, but$A\int B$ is the greatest lower bound:\index{*Int_greatest theorem}\begin{ttbox}by (resolve_tac [Int_greatest] 1);{\out Level 9}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out 1. !!x. [| x <= A; x <= B |] ==> x <= A}{\out 2. !!x. [| x <= A; x <= B |] ==> x <= B}\end{ttbox}To conclude the proof, we clear up the trivial subgoals:\begin{ttbox}by (REPEAT (assume_tac 1));{\out Level 10}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out No subgoals!}\end{ttbox}\medskipWe could have performed this proof in one step by applying\ttindex{Blast_tac}. Let usgo back to the start:\begin{ttbox}choplev 0;{\out Level 0}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out 1. Pow(A Int B) = Pow(A) Int Pow(B)}by (Blast_tac 1);{\out Depth = 0}{\out Depth = 1}{\out Depth = 2}{\out Depth = 3}{\out Level 1}{\out Pow(A Int B) = Pow(A) Int Pow(B)}{\out No subgoals!}\end{ttbox}Past researchers regarded this as a difficult proof, as indeed it is if allthe symbols are replaced by their definitions.\goodbreak\section{Monotonicity of the union operator}For another example, we prove that general union is monotonic:${C\subseteq D}$ implies $\bigcup(C)\subseteq \bigcup(D)$. To begin, wetackle the inclusion using \tdx{subsetI}:\begin{ttbox}Goal "C<=D ==> Union(C) <= Union(D)";{\out Level 0}{\out C <= D ==> Union(C) <= Union(D)}{\out 1. C <= D ==> Union(C) <= Union(D)}\ttbreakby (resolve_tac [subsetI] 1);{\out Level 1}{\out C <= D ==> Union(C) <= Union(D)}{\out 1. !!x. [| C <= D; x : Union(C) |] ==> x : Union(D)}\end{ttbox}Big union is like an existential quantifier --- the occurrence in theassumptions must be eliminated early, since it creates parameters.\index{*UnionE theorem}\begin{ttbox}by (eresolve_tac [UnionE] 1);{\out Level 2}{\out C <= D ==> Union(C) <= Union(D)}{\out 1. !!x B. [| C <= D; x : B; B : C |] ==> x : Union(D)}\end{ttbox}Now we may apply \tdx{UnionI}, which creates an unknown involving theparameters. To show $x\in \bigcup(D)$ it suffices to show that $x$ belongsto some element, say~$\Var{B2}(x,B)$, of~$D$.\begin{ttbox}by (resolve_tac [UnionI] 1);{\out Level 3}{\out C <= D ==> Union(C) <= Union(D)}{\out 1. !!x B. [| C <= D; x : B; B : C |] ==> ?B2(x,B) : D}{\out 2. !!x B. [| C <= D; x : B; B : C |] ==> x : ?B2(x,B)}\end{ttbox}Combining \tdx{subsetD} with the assumption $C\subseteq D$ yields $\Var{a}\in C \Imp \Var{a}\in D$, which reduces subgoal~1. Note that\texttt{eresolve_tac} has removed that assumption.\begin{ttbox}by (eresolve_tac [subsetD] 1);{\out Level 4}{\out C <= D ==> Union(C) <= Union(D)}{\out 1. !!x B. [| x : B; B : C |] ==> ?B2(x,B) : C}{\out 2. !!x B. [| C <= D; x : B; B : C |] ==> x : ?B2(x,B)}\end{ttbox}The rest is routine. Observe how~$\Var{B2}(x,B)$ is instantiated.\begin{ttbox}by (assume_tac 1);{\out Level 5}{\out C <= D ==> Union(C) <= Union(D)}{\out 1. !!x B. [| C <= D; x : B; B : C |] ==> x : B}by (assume_tac 1);{\out Level 6}{\out C <= D ==> Union(C) <= Union(D)}{\out No subgoals!}\end{ttbox}Again, \ttindex{Blast_tac} can prove the theorem in one step.\begin{ttbox}by (Blast_tac 1);{\out Depth = 0}{\out Depth = 1}{\out Depth = 2}{\out Level 1}{\out C <= D ==> Union(C) <= Union(D)}{\out No subgoals!}\end{ttbox}The file \texttt{ZF/equalities.ML} has many similar proofs. Reasoning aboutgeneral intersection can be difficult because of its anomalous behaviour onthe empty set. However, \ttindex{Blast_tac} copes well with these. Here isa typical example, borrowed from Devlin~\cite[page 12]{devlin79}:\begin{ttbox}a:C ==> (INT x:C. A(x) Int B(x)) = (INT x:C. A(x)) Int (INT x:C. B(x))\end{ttbox}In traditional notation this is\[ a\in C \,\Imp\, \inter@{x\in C} \Bigl(A(x) \int B(x)\Bigr) = \Bigl(\inter@{x\in C} A(x)\Bigr) \int \Bigl(\inter@{x\in C} B(x)\Bigr) \]\section{Low-level reasoning about functions}The derived rules \texttt{lamI}, \texttt{lamE}, \texttt{lam_type}, \texttt{beta}and \texttt{eta} support reasoning about functions in a$\lambda$-calculus style. This is generally easier than regardingfunctions as sets of ordered pairs. But sometimes we must look at theunderlying representation, as in the following proofof~\tdx{fun_disjoint_apply1}. This states that if $f$ and~$g$ arefunctions with disjoint domains~$A$ and~$C$, and if $a\in A$, then$(f\un g)`a = f`a$:\begin{ttbox}Goal "[| a:A; f: A->B; g: C->D; A Int C = 0 |] ==> \ttback\ttback (f Un g)`a = f`a";{\out Level 0}{\out [| a : A; f : A -> B; g : C -> D; A Int C = 0 |]}{\out ==> (f Un g) ` a = f ` a}{\out 1. [| a : A; f : A -> B; g : C -> D; A Int C = 0 |]}{\out ==> (f Un g) ` a = f ` a}\end{ttbox}Using \tdx{apply_equality}, we reduce the equality to reasoning aboutordered pairs. The second subgoal is to verify that $f\un g$ is a function.To save space, the assumptions will be abbreviated below.\begin{ttbox}by (resolve_tac [apply_equality] 1);{\out Level 1}{\out [| \ldots |] ==> (f Un g) ` a = f ` a}{\out 1. [| \ldots |] ==> <a,f ` a> : f Un g}{\out 2. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}\end{ttbox}We must show that the pair belongs to~$f$ or~$g$; by~\tdx{UnI1} wechoose~$f$:\begin{ttbox}by (resolve_tac [UnI1] 1);{\out Level 2}{\out [| \ldots |] ==> (f Un g) ` a = f ` a}{\out 1. [| \ldots |] ==> <a,f ` a> : f}{\out 2. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}\end{ttbox}To show $\pair{a,f`a}\in f$ we use \tdx{apply_Pair}, which isessentially the converse of \tdx{apply_equality}:\begin{ttbox}by (resolve_tac [apply_Pair] 1);{\out Level 3}{\out [| \ldots |] ==> (f Un g) ` a = f ` a}{\out 1. [| \ldots |] ==> f : (PROD x:?A2. ?B2(x))}{\out 2. [| \ldots |] ==> a : ?A2}{\out 3. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}\end{ttbox}Using the assumptions $f\in A\to B$ and $a\in A$, we solve the two subgoalsfrom \tdx{apply_Pair}. Recall that a $\Pi$-set is merely a generalizedfunction space, and observe that~{\tt?A2} is instantiated to~\texttt{A}.\begin{ttbox}by (assume_tac 1);{\out Level 4}{\out [| \ldots |] ==> (f Un g) ` a = f ` a}{\out 1. [| \ldots |] ==> a : A}{\out 2. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}by (assume_tac 1);{\out Level 5}{\out [| \ldots |] ==> (f Un g) ` a = f ` a}{\out 1. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}\end{ttbox}To construct functions of the form $f\un g$, we apply\tdx{fun_disjoint_Un}:\begin{ttbox}by (resolve_tac [fun_disjoint_Un] 1);{\out Level 6}{\out [| \ldots |] ==> (f Un g) ` a = f ` a}{\out 1. [| \ldots |] ==> f : ?A3 -> ?B3}{\out 2. [| \ldots |] ==> g : ?C3 -> ?D3}{\out 3. [| \ldots |] ==> ?A3 Int ?C3 = 0}\end{ttbox}The remaining subgoals are instances of the assumptions. Again, observe howunknowns are instantiated:\begin{ttbox}by (assume_tac 1);{\out Level 7}{\out [| \ldots |] ==> (f Un g) ` a = f ` a}{\out 1. [| \ldots |] ==> g : ?C3 -> ?D3}{\out 2. [| \ldots |] ==> A Int ?C3 = 0}by (assume_tac 1);{\out Level 8}{\out [| \ldots |] ==> (f Un g) ` a = f ` a}{\out 1. [| \ldots |] ==> A Int C = 0}by (assume_tac 1);{\out Level 9}{\out [| \ldots |] ==> (f Un g) ` a = f ` a}{\out No subgoals!}\end{ttbox}See the files \texttt{ZF/func.ML} and \texttt{ZF/WF.ML} for moreexamples of reasoning about functions.\index{set theory|)}