| author | wenzelm | 
| Sat, 10 Jul 1999 21:46:15 +0200 | |
| changeset 6967 | a3c163ed1e04 | 
| parent 6053 | 8a1059aa01f0 | 
| child 13134 | bf37a3049251 | 
| permissions | -rw-r--r-- | 
(* Title: ZF/AC.thy ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge The Axiom of Choice This definition comes from Halmos (1960), page 59. *) AC = func + constdefs (*Needs to be visible for Zorn.thy*) increasing :: i=>i "increasing(A) == {f: Pow(A)->Pow(A). ALL x. x<=A --> x<=f`x}" rules AC "[| a: A; !!x. x:A ==> (EX y. y:B(x)) |] ==> EX z. z : Pi(A,B)" end