(* Title: HOL/BNF/Tools/bnf_comp.ML
Author: Dmitriy Traytel, TU Muenchen
Author: Jasmin Blanchette, TU Muenchen
Copyright 2012
Composition of bounded natural functors.
*)
signature BNF_COMP =
sig
val ID_bnf: BNF_Def.bnf
val DEADID_bnf: BNF_Def.bnf
type unfold_set
val empty_unfolds: unfold_set
val bnf_of_typ: BNF_Def.const_policy -> (binding -> binding) ->
((string * sort) list list -> (string * sort) list) -> typ -> unfold_set * Proof.context ->
(BNF_Def.bnf * (typ list * typ list)) * (unfold_set * Proof.context)
val default_comp_sort: (string * sort) list list -> (string * sort) list
val normalize_bnfs: (int -> binding -> binding) -> ''a list list -> ''a list ->
(''a list list -> ''a list) -> BNF_Def.bnf list -> unfold_set -> Proof.context ->
(int list list * ''a list) * (BNF_Def.bnf list * (unfold_set * Proof.context))
val seal_bnf: unfold_set -> binding -> typ list -> BNF_Def.bnf -> Proof.context ->
(BNF_Def.bnf * typ list) * local_theory
end;
structure BNF_Comp : BNF_COMP =
struct
open BNF_Def
open BNF_Util
open BNF_Tactics
open BNF_Comp_Tactics
val ID_bnf = the (bnf_of @{context} "Basic_BNFs.ID");
val DEADID_bnf = the (bnf_of @{context} "Basic_BNFs.DEADID");
(* TODO: Replace by "BNF_Defs.defs list" *)
type unfold_set = {
map_unfolds: thm list,
set_unfoldss: thm list list,
rel_unfolds: thm list
};
val empty_unfolds = {map_unfolds = [], set_unfoldss = [], rel_unfolds = []};
fun add_to_thms thms new = thms |> not (Thm.is_reflexive new) ? insert Thm.eq_thm new;
fun adds_to_thms thms news = insert (eq_set Thm.eq_thm) (no_reflexive news) thms;
fun add_to_unfolds map sets rel
{map_unfolds, set_unfoldss, rel_unfolds} =
{map_unfolds = add_to_thms map_unfolds map,
set_unfoldss = adds_to_thms set_unfoldss sets,
rel_unfolds = add_to_thms rel_unfolds rel};
fun add_bnf_to_unfolds bnf =
add_to_unfolds (map_def_of_bnf bnf) (set_defs_of_bnf bnf) (rel_def_of_bnf bnf);
val bdTN = "bdT";
fun mk_killN n = "_kill" ^ string_of_int n;
fun mk_liftN n = "_lift" ^ string_of_int n;
fun mk_permuteN src dest =
"_permute_" ^ implode (map string_of_int src) ^ "_" ^ implode (map string_of_int dest);
(*copied from Envir.expand_term_free*)
fun expand_term_const defs =
let
val eqs = map ((fn ((x, U), u) => (x, (U, u))) o apfst dest_Const) defs;
val get = fn Const (x, _) => AList.lookup (op =) eqs x | _ => NONE;
in Envir.expand_term get end;
fun clean_compose_bnf const_policy qualify b outer inners (unfold_set, lthy) =
let
val olive = live_of_bnf outer;
val onwits = nwits_of_bnf outer;
val odead = dead_of_bnf outer;
val inner = hd inners;
val ilive = live_of_bnf inner;
val ideads = map dead_of_bnf inners;
val inwitss = map nwits_of_bnf inners;
(* TODO: check olive = length inners > 0,
forall inner from inners. ilive = live,
forall inner from inners. idead = dead *)
val (oDs, lthy1) = apfst (map TFree)
(Variable.invent_types (replicate odead HOLogic.typeS) lthy);
val (Dss, lthy2) = apfst (map (map TFree))
(fold_map Variable.invent_types (map (fn n => replicate n HOLogic.typeS) ideads) lthy1);
val (Ass, lthy3) = apfst (replicate ilive o map TFree)
(Variable.invent_types (replicate ilive HOLogic.typeS) lthy2);
val As = if ilive > 0 then hd Ass else [];
val Ass_repl = replicate olive As;
val (Bs, _(*lthy4*)) = apfst (map TFree)
(Variable.invent_types (replicate ilive HOLogic.typeS) lthy3);
val Bss_repl = replicate olive Bs;
val ((((fs', Qs'), Asets), xs), _(*names_lthy*)) = lthy
|> apfst snd o mk_Frees' "f" (map2 (curry (op -->)) As Bs)
||>> apfst snd o mk_Frees' "Q" (map2 mk_pred2T As Bs)
||>> mk_Frees "A" (map HOLogic.mk_setT As)
||>> mk_Frees "x" As;
val CAs = map3 mk_T_of_bnf Dss Ass_repl inners;
val CCA = mk_T_of_bnf oDs CAs outer;
val CBs = map3 mk_T_of_bnf Dss Bss_repl inners;
val outer_sets = mk_sets_of_bnf (replicate olive oDs) (replicate olive CAs) outer;
val inner_setss = map3 mk_sets_of_bnf (map (replicate ilive) Dss) (replicate olive Ass) inners;
val inner_bds = map3 mk_bd_of_bnf Dss Ass_repl inners;
val outer_bd = mk_bd_of_bnf oDs CAs outer;
(*%f1 ... fn. outer.map (inner_1.map f1 ... fn) ... (inner_m.map f1 ... fn)*)
val mapx = fold_rev Term.abs fs'
(Term.list_comb (mk_map_of_bnf oDs CAs CBs outer,
map2 (fn Ds => (fn f => Term.list_comb (f, map Bound (ilive - 1 downto 0))) o
mk_map_of_bnf Ds As Bs) Dss inners));
(*%Q1 ... Qn. outer.rel (inner_1.rel Q1 ... Qn) ... (inner_m.rel Q1 ... Qn)*)
val rel = fold_rev Term.abs Qs'
(Term.list_comb (mk_rel_of_bnf oDs CAs CBs outer,
map2 (fn Ds => (fn f => Term.list_comb (f, map Bound (ilive - 1 downto 0))) o
mk_rel_of_bnf Ds As Bs) Dss inners));
(*Union o collect {outer.set_1 ... outer.set_m} o outer.map inner_1.set_i ... inner_m.set_i*)
(*Union o collect {image inner_1.set_i o outer.set_1 ... image inner_m.set_i o outer.set_m}*)
fun mk_set i =
let
val (setTs, T) = `(replicate olive o HOLogic.mk_setT) (nth As i);
val outer_set = mk_collect
(mk_sets_of_bnf (replicate olive oDs) (replicate olive setTs) outer)
(mk_T_of_bnf oDs setTs outer --> HOLogic.mk_setT T);
val inner_sets = map (fn sets => nth sets i) inner_setss;
val outer_map = mk_map_of_bnf oDs CAs setTs outer;
val map_inner_sets = Term.list_comb (outer_map, inner_sets);
val collect_image = mk_collect
(map2 (fn f => fn set => HOLogic.mk_comp (mk_image f, set)) inner_sets outer_sets)
(CCA --> HOLogic.mk_setT T);
in
(Library.foldl1 HOLogic.mk_comp [mk_Union T, outer_set, map_inner_sets],
HOLogic.mk_comp (mk_Union T, collect_image))
end;
val (sets, sets_alt) = map_split mk_set (0 upto ilive - 1);
(*(inner_1.bd +c ... +c inner_m.bd) *c outer.bd*)
val bd = Term.absdummy CCA (mk_cprod (Library.foldr1 (uncurry mk_csum) inner_bds) outer_bd);
fun map_id_tac _ =
mk_comp_map_id_tac (map_id_of_bnf outer) (map_cong0_of_bnf outer)
(map map_id_of_bnf inners);
fun map_comp_tac _ =
mk_comp_map_comp_tac (map_comp_of_bnf outer) (map_cong0_of_bnf outer)
(map map_comp_of_bnf inners);
fun mk_single_set_map_tac i _ =
mk_comp_set_map_tac (map_comp_of_bnf outer) (map_cong0_of_bnf outer)
(collect_set_map_of_bnf outer)
(map ((fn thms => nth thms i) o set_map_of_bnf) inners);
val set_map_tacs = map mk_single_set_map_tac (0 upto ilive - 1);
fun bd_card_order_tac _ =
mk_comp_bd_card_order_tac (map bd_card_order_of_bnf inners) (bd_card_order_of_bnf outer);
fun bd_cinfinite_tac _ =
mk_comp_bd_cinfinite_tac (bd_cinfinite_of_bnf inner) (bd_cinfinite_of_bnf outer);
val set_alt_thms =
if Config.get lthy quick_and_dirty then
[]
else
map (fn goal =>
Goal.prove_sorry lthy [] [] goal
(fn {context = ctxt, prems = _} =>
mk_comp_set_alt_tac ctxt (collect_set_map_of_bnf outer))
|> Thm.close_derivation)
(map2 (curry (HOLogic.mk_Trueprop o HOLogic.mk_eq)) sets sets_alt);
fun map_cong0_tac _ =
mk_comp_map_cong0_tac set_alt_thms (map_cong0_of_bnf outer) (map map_cong0_of_bnf inners);
val set_bd_tacs =
if Config.get lthy quick_and_dirty then
replicate ilive (K all_tac)
else
let
val outer_set_bds = set_bd_of_bnf outer;
val inner_set_bdss = map set_bd_of_bnf inners;
val inner_bd_Card_orders = map bd_Card_order_of_bnf inners;
fun single_set_bd_thm i j =
@{thm comp_single_set_bd} OF [nth inner_bd_Card_orders j, nth (nth inner_set_bdss j) i,
nth outer_set_bds j]
val single_set_bd_thmss =
map ((fn f => map f (0 upto olive - 1)) o single_set_bd_thm) (0 upto ilive - 1);
in
map2 (fn set_alt => fn single_set_bds => fn {context = ctxt, prems = _} =>
mk_comp_set_bd_tac ctxt set_alt single_set_bds)
set_alt_thms single_set_bd_thmss
end;
val in_alt_thm =
let
val inx = mk_in Asets sets CCA;
val in_alt = mk_in (map2 (mk_in Asets) inner_setss CAs) outer_sets CCA;
val goal = fold_rev Logic.all Asets (mk_Trueprop_eq (inx, in_alt));
in
Goal.prove_sorry lthy [] [] goal
(fn {context = ctxt, prems = _} => mk_comp_in_alt_tac ctxt set_alt_thms)
|> Thm.close_derivation
end;
fun in_bd_tac _ =
mk_comp_in_bd_tac in_alt_thm (map in_bd_of_bnf inners) (in_bd_of_bnf outer)
(map bd_Cinfinite_of_bnf inners) (bd_Card_order_of_bnf outer);
fun map_wpull_tac _ =
mk_map_wpull_tac in_alt_thm (map map_wpull_of_bnf inners) (map_wpull_of_bnf outer);
fun rel_OO_Grp_tac _ =
let
val outer_rel_Grp = rel_Grp_of_bnf outer RS sym;
val outer_rel_cong = rel_cong_of_bnf outer;
val thm =
(trans OF [in_alt_thm RS @{thm OO_Grp_cong},
trans OF [@{thm arg_cong2[of _ _ _ _ relcompp]} OF
[trans OF [outer_rel_Grp RS @{thm arg_cong[of _ _ conversep]},
rel_conversep_of_bnf outer RS sym], outer_rel_Grp],
trans OF [rel_OO_of_bnf outer RS sym, outer_rel_cong OF
(map (fn bnf => rel_OO_Grp_of_bnf bnf RS sym) inners)]]] RS sym)
(*|> unfold_thms lthy (rel_def_of_bnf outer :: map rel_def_of_bnf inners)*);
in
rtac thm 1
end;
val tacs = zip_axioms map_id_tac map_comp_tac map_cong0_tac set_map_tacs bd_card_order_tac
bd_cinfinite_tac set_bd_tacs in_bd_tac map_wpull_tac rel_OO_Grp_tac;
val outer_wits = mk_wits_of_bnf (replicate onwits oDs) (replicate onwits CAs) outer;
val inner_witss = map (map (fn (I, wit) => Term.list_comb (wit, map (nth xs) I)))
(map3 (fn Ds => fn n => mk_wits_of_bnf (replicate n Ds) (replicate n As))
Dss inwitss inners);
val inner_witsss = map (map (nth inner_witss) o fst) outer_wits;
val wits = (inner_witsss, (map (single o snd) outer_wits))
|-> map2 (fold (map_product (fn iwit => fn owit => owit $ iwit)))
|> flat
|> map (`(fn t => Term.add_frees t []))
|> minimize_wits
|> map (fn (frees, t) => fold absfree frees t);
fun wit_tac {context = ctxt, prems = _} =
mk_comp_wit_tac ctxt (wit_thms_of_bnf outer) (collect_set_map_of_bnf outer)
(maps wit_thms_of_bnf inners);
val (bnf', lthy') =
bnf_def const_policy (K Dont_Note) qualify tacs wit_tac (SOME (oDs @ flat Dss)) Binding.empty
Binding.empty [] (((((b, mapx), sets), bd), wits), SOME rel) lthy;
in
(bnf', (add_bnf_to_unfolds bnf' unfold_set, lthy'))
end;
(* Killing live variables *)
fun kill_bnf qualify n bnf (unfold_set, lthy) = if n = 0 then (bnf, (unfold_set, lthy)) else
let
val b = Binding.suffix_name (mk_killN n) (name_of_bnf bnf);
val live = live_of_bnf bnf;
val dead = dead_of_bnf bnf;
val nwits = nwits_of_bnf bnf;
(* TODO: check 0 < n <= live *)
val (Ds, lthy1) = apfst (map TFree)
(Variable.invent_types (replicate dead HOLogic.typeS) lthy);
val ((killedAs, As), lthy2) = apfst (`(take n) o map TFree)
(Variable.invent_types (replicate live HOLogic.typeS) lthy1);
val (Bs, _(*lthy3*)) = apfst (append killedAs o map TFree)
(Variable.invent_types (replicate (live - n) HOLogic.typeS) lthy2);
val ((Asets, lives), _(*names_lthy*)) = lthy
|> mk_Frees "A" (map HOLogic.mk_setT (drop n As))
||>> mk_Frees "x" (drop n As);
val xs = map (fn T => HOLogic.choice_const T $ absdummy T @{term True}) killedAs @ lives;
val T = mk_T_of_bnf Ds As bnf;
(*bnf.map id ... id*)
val mapx = Term.list_comb (mk_map_of_bnf Ds As Bs bnf, map HOLogic.id_const killedAs);
(*bnf.rel (op =) ... (op =)*)
val rel = Term.list_comb (mk_rel_of_bnf Ds As Bs bnf, map HOLogic.eq_const killedAs);
val bnf_sets = mk_sets_of_bnf (replicate live Ds) (replicate live As) bnf;
val sets = drop n bnf_sets;
(*(|UNIV :: A1 set| +c ... +c |UNIV :: An set|) *c bnf.bd*)
val bnf_bd = mk_bd_of_bnf Ds As bnf;
val bd = mk_cprod
(Library.foldr1 (uncurry mk_csum) (map (mk_card_of o HOLogic.mk_UNIV) killedAs)) bnf_bd;
fun map_id_tac _ = rtac (map_id_of_bnf bnf) 1;
fun map_comp_tac {context = ctxt, prems = _} =
unfold_thms_tac ctxt ((map_comp_of_bnf bnf RS sym) :: @{thms o_assoc id_o o_id}) THEN
rtac refl 1;
fun map_cong0_tac {context = ctxt, prems = _} =
mk_kill_map_cong0_tac ctxt n (live - n) (map_cong0_of_bnf bnf);
val set_map_tacs = map (fn thm => fn _ => rtac thm 1) (drop n (set_map_of_bnf bnf));
fun bd_card_order_tac _ = mk_kill_bd_card_order_tac n (bd_card_order_of_bnf bnf);
fun bd_cinfinite_tac _ = mk_kill_bd_cinfinite_tac (bd_Cinfinite_of_bnf bnf);
val set_bd_tacs =
map (fn thm => fn _ => mk_kill_set_bd_tac (bd_Card_order_of_bnf bnf) thm)
(drop n (set_bd_of_bnf bnf));
val in_alt_thm =
let
val inx = mk_in Asets sets T;
val in_alt = mk_in (map HOLogic.mk_UNIV killedAs @ Asets) bnf_sets T;
val goal = fold_rev Logic.all Asets (mk_Trueprop_eq (inx, in_alt));
in
Goal.prove_sorry lthy [] [] goal (K kill_in_alt_tac) |> Thm.close_derivation
end;
fun in_bd_tac _ =
mk_kill_in_bd_tac n (live > n) in_alt_thm (in_bd_of_bnf bnf) (bd_Card_order_of_bnf bnf)
(bd_Cinfinite_of_bnf bnf) (bd_Cnotzero_of_bnf bnf);
fun map_wpull_tac _ = mk_map_wpull_tac in_alt_thm [] (map_wpull_of_bnf bnf);
fun rel_OO_Grp_tac _ =
let
val rel_Grp = rel_Grp_of_bnf bnf RS sym
val thm =
(trans OF [in_alt_thm RS @{thm OO_Grp_cong},
trans OF [@{thm arg_cong2[of _ _ _ _ relcompp]} OF
[trans OF [rel_Grp RS @{thm arg_cong[of _ _ conversep]},
rel_conversep_of_bnf bnf RS sym], rel_Grp],
trans OF [rel_OO_of_bnf bnf RS sym, rel_cong_of_bnf bnf OF
(replicate n @{thm trans[OF Grp_UNIV_id[OF refl] eq_alt[symmetric]]} @
replicate (live - n) @{thm Grp_fst_snd})]]] RS sym)
(*|> unfold_thms lthy (rel_def_of_bnf bnf :: @{thms Id_def' mem_Collect_eq split_conv})*);
in
rtac thm 1
end;
val tacs = zip_axioms map_id_tac map_comp_tac map_cong0_tac set_map_tacs bd_card_order_tac
bd_cinfinite_tac set_bd_tacs in_bd_tac map_wpull_tac rel_OO_Grp_tac;
val bnf_wits = mk_wits_of_bnf (replicate nwits Ds) (replicate nwits As) bnf;
val wits = map (fn t => fold absfree (Term.add_frees t []) t)
(map (fn (I, wit) => Term.list_comb (wit, map (nth xs) I)) bnf_wits);
fun wit_tac _ = mk_simple_wit_tac (wit_thms_of_bnf bnf);
val (bnf', lthy') =
bnf_def Smart_Inline (K Dont_Note) qualify tacs wit_tac (SOME (killedAs @ Ds)) Binding.empty
Binding.empty [] (((((b, mapx), sets), Term.absdummy T bd), wits), SOME rel) lthy;
in
(bnf', (add_bnf_to_unfolds bnf' unfold_set, lthy'))
end;
(* Adding dummy live variables *)
fun lift_bnf qualify n bnf (unfold_set, lthy) = if n = 0 then (bnf, (unfold_set, lthy)) else
let
val b = Binding.suffix_name (mk_liftN n) (name_of_bnf bnf);
val live = live_of_bnf bnf;
val dead = dead_of_bnf bnf;
val nwits = nwits_of_bnf bnf;
(* TODO: check 0 < n *)
val (Ds, lthy1) = apfst (map TFree)
(Variable.invent_types (replicate dead HOLogic.typeS) lthy);
val ((newAs, As), lthy2) = apfst (chop n o map TFree)
(Variable.invent_types (replicate (n + live) HOLogic.typeS) lthy1);
val ((newBs, Bs), _(*lthy3*)) = apfst (chop n o map TFree)
(Variable.invent_types (replicate (n + live) HOLogic.typeS) lthy2);
val (Asets, _(*names_lthy*)) = lthy
|> mk_Frees "A" (map HOLogic.mk_setT (newAs @ As));
val T = mk_T_of_bnf Ds As bnf;
(*%f1 ... fn. bnf.map*)
val mapx =
fold_rev Term.absdummy (map2 (curry (op -->)) newAs newBs) (mk_map_of_bnf Ds As Bs bnf);
(*%Q1 ... Qn. bnf.rel*)
val rel = fold_rev Term.absdummy (map2 mk_pred2T newAs newBs) (mk_rel_of_bnf Ds As Bs bnf);
val bnf_sets = mk_sets_of_bnf (replicate live Ds) (replicate live As) bnf;
val sets = map (fn A => absdummy T (HOLogic.mk_set A [])) newAs @ bnf_sets;
val bd = mk_bd_of_bnf Ds As bnf;
fun map_id_tac _ = rtac (map_id_of_bnf bnf) 1;
fun map_comp_tac {context = ctxt, prems = _} =
unfold_thms_tac ctxt ((map_comp_of_bnf bnf RS sym) :: @{thms o_assoc id_o o_id}) THEN
rtac refl 1;
fun map_cong0_tac {context = ctxt, prems = _} =
rtac (map_cong0_of_bnf bnf) 1 THEN REPEAT_DETERM_N live (Goal.assume_rule_tac ctxt 1);
val set_map_tacs =
if Config.get lthy quick_and_dirty then
replicate (n + live) (K all_tac)
else
replicate n (K empty_natural_tac) @
map (fn thm => fn _ => rtac thm 1) (set_map_of_bnf bnf);
fun bd_card_order_tac _ = rtac (bd_card_order_of_bnf bnf) 1;
fun bd_cinfinite_tac _ = rtac (bd_cinfinite_of_bnf bnf) 1;
val set_bd_tacs =
if Config.get lthy quick_and_dirty then
replicate (n + live) (K all_tac)
else
replicate n (K (mk_lift_set_bd_tac (bd_Card_order_of_bnf bnf))) @
(map (fn thm => fn _ => rtac thm 1) (set_bd_of_bnf bnf));
val in_alt_thm =
let
val inx = mk_in Asets sets T;
val in_alt = mk_in (drop n Asets) bnf_sets T;
val goal = fold_rev Logic.all Asets (mk_Trueprop_eq (inx, in_alt));
in
Goal.prove_sorry lthy [] [] goal (K lift_in_alt_tac) |> Thm.close_derivation
end;
fun in_bd_tac _ = mk_lift_in_bd_tac n in_alt_thm (in_bd_of_bnf bnf) (bd_Card_order_of_bnf bnf);
fun map_wpull_tac _ = mk_map_wpull_tac in_alt_thm [] (map_wpull_of_bnf bnf);
fun rel_OO_Grp_tac _ = mk_simple_rel_OO_Grp_tac (rel_OO_Grp_of_bnf bnf) in_alt_thm;
val tacs = zip_axioms map_id_tac map_comp_tac map_cong0_tac set_map_tacs bd_card_order_tac
bd_cinfinite_tac set_bd_tacs in_bd_tac map_wpull_tac rel_OO_Grp_tac;
val wits = map snd (mk_wits_of_bnf (replicate nwits Ds) (replicate nwits As) bnf);
fun wit_tac _ = mk_simple_wit_tac (wit_thms_of_bnf bnf);
val (bnf', lthy') =
bnf_def Smart_Inline (K Dont_Note) qualify tacs wit_tac (SOME Ds) Binding.empty Binding.empty
[] (((((b, mapx), sets), Term.absdummy T bd), wits), SOME rel) lthy;
in
(bnf', (add_bnf_to_unfolds bnf' unfold_set, lthy'))
end;
(* Changing the order of live variables *)
fun permute_bnf qualify src dest bnf (unfold_set, lthy) =
if src = dest then (bnf, (unfold_set, lthy)) else
let
val b = Binding.suffix_name (mk_permuteN src dest) (name_of_bnf bnf);
val live = live_of_bnf bnf;
val dead = dead_of_bnf bnf;
val nwits = nwits_of_bnf bnf;
fun permute xs = mk_permute src dest xs;
fun permute_rev xs = mk_permute dest src xs;
val (Ds, lthy1) = apfst (map TFree)
(Variable.invent_types (replicate dead HOLogic.typeS) lthy);
val (As, lthy2) = apfst (map TFree)
(Variable.invent_types (replicate live HOLogic.typeS) lthy1);
val (Bs, _(*lthy3*)) = apfst (map TFree)
(Variable.invent_types (replicate live HOLogic.typeS) lthy2);
val (Asets, _(*names_lthy*)) = lthy
|> mk_Frees "A" (map HOLogic.mk_setT (permute As));
val T = mk_T_of_bnf Ds As bnf;
(*%f(1) ... f(n). bnf.map f\<sigma>(1) ... f\<sigma>(n)*)
val mapx = fold_rev Term.absdummy (permute (map2 (curry op -->) As Bs))
(Term.list_comb (mk_map_of_bnf Ds As Bs bnf, permute_rev (map Bound (live - 1 downto 0))));
(*%Q(1) ... Q(n). bnf.rel Q\<sigma>(1) ... Q\<sigma>(n)*)
val rel = fold_rev Term.absdummy (permute (map2 mk_pred2T As Bs))
(Term.list_comb (mk_rel_of_bnf Ds As Bs bnf, permute_rev (map Bound (live - 1 downto 0))));
val bnf_sets = mk_sets_of_bnf (replicate live Ds) (replicate live As) bnf;
val sets = permute bnf_sets;
val bd = mk_bd_of_bnf Ds As bnf;
fun map_id_tac _ = rtac (map_id_of_bnf bnf) 1;
fun map_comp_tac _ = rtac (map_comp_of_bnf bnf) 1;
fun map_cong0_tac {context = ctxt, prems = _} =
rtac (map_cong0_of_bnf bnf) 1 THEN REPEAT_DETERM_N live (Goal.assume_rule_tac ctxt 1);
val set_map_tacs = permute (map (fn thm => fn _ => rtac thm 1) (set_map_of_bnf bnf));
fun bd_card_order_tac _ = rtac (bd_card_order_of_bnf bnf) 1;
fun bd_cinfinite_tac _ = rtac (bd_cinfinite_of_bnf bnf) 1;
val set_bd_tacs = permute (map (fn thm => fn _ => rtac thm 1) (set_bd_of_bnf bnf));
val in_alt_thm =
let
val inx = mk_in Asets sets T;
val in_alt = mk_in (permute_rev Asets) bnf_sets T;
val goal = fold_rev Logic.all Asets (mk_Trueprop_eq (inx, in_alt));
in
Goal.prove_sorry lthy [] [] goal (K (mk_permute_in_alt_tac src dest))
|> Thm.close_derivation
end;
fun in_bd_tac _ =
mk_permute_in_bd_tac src dest in_alt_thm (in_bd_of_bnf bnf) (bd_Card_order_of_bnf bnf);
fun map_wpull_tac _ = mk_map_wpull_tac in_alt_thm [] (map_wpull_of_bnf bnf);
fun rel_OO_Grp_tac _ = mk_simple_rel_OO_Grp_tac (rel_OO_Grp_of_bnf bnf) in_alt_thm;
val tacs = zip_axioms map_id_tac map_comp_tac map_cong0_tac set_map_tacs bd_card_order_tac
bd_cinfinite_tac set_bd_tacs in_bd_tac map_wpull_tac rel_OO_Grp_tac;
val wits = map snd (mk_wits_of_bnf (replicate nwits Ds) (replicate nwits As) bnf);
fun wit_tac _ = mk_simple_wit_tac (wit_thms_of_bnf bnf);
val (bnf', lthy') =
bnf_def Smart_Inline (K Dont_Note) qualify tacs wit_tac (SOME Ds) Binding.empty Binding.empty
[] (((((b, mapx), sets), Term.absdummy T bd), wits), SOME rel) lthy;
in
(bnf', (add_bnf_to_unfolds bnf' unfold_set, lthy'))
end;
(* Composition pipeline *)
fun permute_and_kill qualify n src dest bnf =
bnf
|> permute_bnf qualify src dest
#> uncurry (kill_bnf qualify n);
fun lift_and_permute qualify n src dest bnf =
bnf
|> lift_bnf qualify n
#> uncurry (permute_bnf qualify src dest);
fun normalize_bnfs qualify Ass Ds sort bnfs unfold_set lthy =
let
val before_kill_src = map (fn As => 0 upto (length As - 1)) Ass;
val kill_poss = map (find_indices Ds) Ass;
val live_poss = map2 (subtract (op =)) kill_poss before_kill_src;
val before_kill_dest = map2 append kill_poss live_poss;
val kill_ns = map length kill_poss;
val (inners', (unfold_set', lthy')) =
fold_map5 (fn i => permute_and_kill (qualify i))
(if length bnfs = 1 then [0] else (1 upto length bnfs))
kill_ns before_kill_src before_kill_dest bnfs (unfold_set, lthy);
val Ass' = map2 (map o nth) Ass live_poss;
val As = sort Ass';
val after_lift_dest = replicate (length Ass') (0 upto (length As - 1));
val old_poss = map (map (fn x => find_index (fn y => x = y) As)) Ass';
val new_poss = map2 (subtract (op =)) old_poss after_lift_dest;
val after_lift_src = map2 append new_poss old_poss;
val lift_ns = map (fn xs => length As - length xs) Ass';
in
((kill_poss, As), fold_map5 (fn i => lift_and_permute (qualify i))
(if length bnfs = 1 then [0] else (1 upto length bnfs))
lift_ns after_lift_src after_lift_dest inners' (unfold_set', lthy'))
end;
fun default_comp_sort Ass =
Library.sort (Term_Ord.typ_ord o pairself TFree) (fold (fold (insert (op =))) Ass []);
fun compose_bnf const_policy qualify sort outer inners oDs Dss tfreess (unfold_set, lthy) =
let
val b = name_of_bnf outer;
val Ass = map (map Term.dest_TFree) tfreess;
val Ds = fold (fold Term.add_tfreesT) (oDs :: Dss) [];
val ((kill_poss, As), (inners', (unfold_set', lthy'))) =
normalize_bnfs qualify Ass Ds sort inners unfold_set lthy;
val Ds = oDs @ flat (map3 (append oo map o nth) tfreess kill_poss Dss);
val As = map TFree As;
in
apfst (rpair (Ds, As))
(clean_compose_bnf const_policy (qualify 0) b outer inners' (unfold_set', lthy'))
end;
(* Hide the type of the bound (optimization) and unfold the definitions (nicer to the user) *)
fun seal_bnf (unfold_set : unfold_set) b Ds bnf lthy =
let
val live = live_of_bnf bnf;
val nwits = nwits_of_bnf bnf;
val (As, lthy1) = apfst (map TFree)
(Variable.invent_types (replicate live HOLogic.typeS) (fold Variable.declare_typ Ds lthy));
val (Bs, _) = apfst (map TFree)
(Variable.invent_types (replicate live HOLogic.typeS) lthy1);
val map_unfolds = #map_unfolds unfold_set;
val set_unfoldss = #set_unfoldss unfold_set;
val rel_unfolds = #rel_unfolds unfold_set;
val expand_maps =
fold expand_term_const (map (single o Logic.dest_equals o Thm.prop_of) map_unfolds);
val expand_sets =
fold expand_term_const (map (map (Logic.dest_equals o Thm.prop_of)) set_unfoldss);
val expand_rels =
fold expand_term_const (map (single o Logic.dest_equals o Thm.prop_of) rel_unfolds);
val unfold_maps = fold (unfold_thms lthy o single) map_unfolds;
val unfold_sets = fold (unfold_thms lthy) set_unfoldss;
val unfold_rels = unfold_thms lthy rel_unfolds;
val unfold_all = unfold_sets o unfold_maps o unfold_rels;
val bnf_map = expand_maps (mk_map_of_bnf Ds As Bs bnf);
val bnf_sets = map (expand_maps o expand_sets)
(mk_sets_of_bnf (replicate live Ds) (replicate live As) bnf);
val bnf_bd = mk_bd_of_bnf Ds As bnf;
val bnf_rel = expand_rels (mk_rel_of_bnf Ds As Bs bnf);
val T = mk_T_of_bnf Ds As bnf;
(*bd should only depend on dead type variables!*)
val bd_repT = fst (dest_relT (fastype_of bnf_bd));
val bdT_bind = Binding.suffix_name ("_" ^ bdTN) b;
val params = fold Term.add_tfreesT Ds [];
val deads = map TFree params;
val ((bdT_name, (bdT_glob_info, bdT_loc_info)), lthy) =
typedef (bdT_bind, params, NoSyn)
(HOLogic.mk_UNIV bd_repT) NONE (EVERY' [rtac exI, rtac UNIV_I] 1) lthy;
val bnf_bd' = mk_dir_image bnf_bd
(Const (#Abs_name bdT_glob_info, bd_repT --> Type (bdT_name, deads)))
val Abs_bdT_inj = mk_Abs_inj_thm (#Abs_inject bdT_loc_info);
val Abs_bdT_bij = mk_Abs_bij_thm lthy Abs_bdT_inj (#Abs_cases bdT_loc_info);
val bd_ordIso = @{thm dir_image} OF [Abs_bdT_inj, bd_Card_order_of_bnf bnf];
val bd_card_order =
@{thm card_order_dir_image} OF [Abs_bdT_bij, bd_card_order_of_bnf bnf];
val bd_cinfinite =
(@{thm Cinfinite_cong} OF [bd_ordIso, bd_Cinfinite_of_bnf bnf]) RS conjunct1;
val set_bds =
map (fn thm => @{thm ordLeq_ordIso_trans} OF [thm, bd_ordIso]) (set_bd_of_bnf bnf);
val in_bd =
@{thm ordLeq_ordIso_trans} OF [in_bd_of_bnf bnf,
@{thm cexp_cong2} OF [bd_ordIso, if live = 0 then
@{thm Card_order_ctwo} else @{thm Card_order_csum},
bd_Card_order_of_bnf bnf]];
fun mk_tac thm {context = ctxt, prems = _} =
(rtac (unfold_all thm) THEN'
SOLVE o REPEAT_DETERM o (atac ORELSE' Goal.assume_rule_tac ctxt)) 1;
val tacs = zip_axioms (mk_tac (map_id_of_bnf bnf)) (mk_tac (map_comp_of_bnf bnf))
(mk_tac (map_cong0_of_bnf bnf)) (map mk_tac (set_map_of_bnf bnf))
(K (rtac bd_card_order 1)) (K (rtac bd_cinfinite 1)) (map mk_tac set_bds) (mk_tac in_bd)
(mk_tac (map_wpull_of_bnf bnf))
(mk_tac (rel_OO_Grp_of_bnf bnf));
val bnf_wits = map snd (mk_wits_of_bnf (replicate nwits Ds) (replicate nwits As) bnf);
fun wit_tac _ = mk_simple_wit_tac (map unfold_all (wit_thms_of_bnf bnf));
val (bnf', lthy') = bnf_def Hardly_Inline (user_policy Dont_Note) I tacs wit_tac (SOME deads)
Binding.empty Binding.empty []
(((((b, bnf_map), bnf_sets), Term.absdummy T bnf_bd'), bnf_wits), SOME bnf_rel) lthy;
in
((bnf', deads), lthy')
end;
fun bnf_of_typ _ _ _ (T as TFree _) accum = ((ID_bnf, ([], [T])), accum)
| bnf_of_typ _ _ _ (TVar _) _ = error "Unexpected schematic variable"
| bnf_of_typ const_policy qualify' sort (T as Type (C, Ts)) (unfold_set, lthy) =
let
val tfrees = Term.add_tfreesT T [];
val bnf_opt = if null tfrees then NONE else bnf_of lthy C;
in
(case bnf_opt of
NONE => ((DEADID_bnf, ([T], [])), (unfold_set, lthy))
| SOME bnf =>
if forall (can Term.dest_TFree) Ts andalso length Ts = length tfrees then
let
val T' = T_of_bnf bnf;
val deads = deads_of_bnf bnf;
val lives = lives_of_bnf bnf;
val tvars' = Term.add_tvarsT T' [];
val deads_lives =
pairself (map (Term.typ_subst_TVars (map fst tvars' ~~ map TFree tfrees)))
(deads, lives);
in ((bnf, deads_lives), (unfold_set, lthy)) end
else
let
val name = Long_Name.base_name C;
fun qualify i =
let val namei = name ^ nonzero_string_of_int i;
in qualify' o Binding.qualify true namei end;
val odead = dead_of_bnf bnf;
val olive = live_of_bnf bnf;
val oDs_pos = find_indices [TFree ("dead", [])] (snd (Term.dest_Type
(mk_T_of_bnf (replicate odead (TFree ("dead", []))) (replicate olive dummyT) bnf)));
val oDs = map (nth Ts) oDs_pos;
val Ts' = map (nth Ts) (subtract (op =) oDs_pos (0 upto length Ts - 1));
val ((inners, (Dss, Ass)), (unfold_set', lthy')) =
apfst (apsnd split_list o split_list)
(fold_map2 (fn i => bnf_of_typ Smart_Inline (qualify i) sort)
(if length Ts' = 1 then [0] else (1 upto length Ts')) Ts' (unfold_set, lthy));
in
compose_bnf const_policy qualify sort bnf inners oDs Dss Ass (unfold_set', lthy')
end)
end;
end;