Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
(* Title: Provers/typedsimp.ML
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Functor for constructing simplifiers. Suitable for Constructive Type
Theory with its typed reflexivity axiom a:A ==> a=a:A. For most logics try
simp.ML.
*)
signature TSIMP_DATA =
sig
val refl: thm (*Reflexive law*)
val sym: thm (*Symmetric law*)
val trans: thm (*Transitive law*)
val refl_red: thm (* reduce(a,a) *)
val trans_red: thm (* [|a=b; reduce(b,c) |] ==> a=c *)
val red_if_equal: thm (* a=b ==> reduce(a,b) *)
(*Built-in rewrite rules*)
val default_rls: thm list
(*Type checking or similar -- solution of routine conditions*)
val routine_tac: Proof.context -> thm list -> int -> tactic
end;
signature TSIMP =
sig
val asm_res_tac: Proof.context -> thm list -> int -> tactic
val cond_norm_tac: Proof.context -> ((int->tactic) * thm list * thm list) -> tactic
val cond_step_tac: Proof.context -> ((int->tactic) * thm list * thm list) -> int -> tactic
val norm_tac: Proof.context -> (thm list * thm list) -> tactic
val process_rules: thm list -> thm list * thm list
val rewrite_res_tac: Proof.context -> int -> tactic
val split_eqn: thm
val step_tac: Proof.context -> (thm list * thm list) -> int -> tactic
val subconv_res_tac: Proof.context -> thm list -> int -> tactic
end;
functor TSimpFun (TSimp_data: TSIMP_DATA) : TSIMP =
struct
local open TSimp_data
in
(*For simplifying both sides of an equation:
[| a=c; b=c |] ==> b=a
Can use resolve_tac [split_eqn] to prepare an equation for simplification. *)
val split_eqn = Drule.zero_var_indexes (sym RSN (2,trans) RS sym);
(* [| a=b; b=c |] ==> reduce(a,c) *)
val red_trans = Drule.zero_var_indexes (trans RS red_if_equal);
(*For REWRITE rule: Make a reduction rule for simplification, e.g.
[| a: C(0); ... ; a=c: C(0) |] ==> rec(0,a,b) = c: C(0) *)
fun simp_rule rl = rl RS trans;
(*For REWRITE rule: Make rule for resimplifying if possible, e.g.
[| a: C(0); ...; a=c: C(0) |] ==> reduce(rec(0,a,b), c) *)
fun resimp_rule rl = rl RS red_trans;
(*For CONGRUENCE rule, like a=b ==> succ(a) = succ(b)
Make rule for simplifying subterms, e.g.
[| a=b: N; reduce(succ(b), c) |] ==> succ(a)=c: N *)
fun subconv_rule rl = rl RS trans_red;
(*If the rule proves an equality then add both forms to simp_rls
else add the rule to other_rls*)
fun add_rule rl (simp_rls, other_rls) =
(simp_rule rl :: resimp_rule rl :: simp_rls, other_rls)
handle THM _ => (simp_rls, rl :: other_rls);
(*Given the list rls, return the pair (simp_rls, other_rls).*)
fun process_rules rls = fold_rev add_rule rls ([], []);
(*Given list of rewrite rules, return list of both forms, reject others*)
fun process_rewrites rls =
case process_rules rls of
(simp_rls,[]) => simp_rls
| (_,others) => raise THM
("process_rewrites: Ill-formed rewrite", 0, others);
(*Process the default rewrite rules*)
val simp_rls = process_rewrites default_rls;
val simp_net = Tactic.build_net simp_rls;
(*If subgoal is too flexible (e.g. ?a=?b or just ?P) then filt_resolve_tac
will fail! The filter will pass all the rules, and the bound permits
no ambiguity.*)
(*Resolution with rewrite/sub rules. Builds the tree for filt_resolve_tac.*)
fun rewrite_res_tac ctxt = filt_resolve_from_net_tac ctxt 2 simp_net;
(*The congruence rules for simplifying subterms. If subgoal is too flexible
then only refl,refl_red will be used (if even them!). *)
fun subconv_res_tac ctxt congr_rls =
filt_resolve_from_net_tac ctxt 2 (Tactic.build_net (map subconv_rule congr_rls))
ORELSE' filt_resolve_from_net_tac ctxt 1 (Tactic.build_net [refl, refl_red]);
(*Resolve with asms, whether rewrites or not*)
fun asm_res_tac ctxt asms =
let val (xsimp_rls, xother_rls) = process_rules asms
in routine_tac ctxt xother_rls ORELSE'
filt_resolve_from_net_tac ctxt 2 (Tactic.build_net xsimp_rls)
end;
(*Single step for simple rewriting*)
fun step_tac ctxt (congr_rls, asms) =
asm_res_tac ctxt asms ORELSE' rewrite_res_tac ctxt ORELSE'
subconv_res_tac ctxt congr_rls;
(*Single step for conditional rewriting: prove_cond_tac handles new subgoals.*)
fun cond_step_tac ctxt (prove_cond_tac, congr_rls, asms) =
asm_res_tac ctxt asms ORELSE' rewrite_res_tac ctxt ORELSE'
(resolve_tac ctxt [trans, red_trans] THEN' prove_cond_tac) ORELSE'
subconv_res_tac ctxt congr_rls;
(*Unconditional normalization tactic*)
fun norm_tac ctxt arg = REPEAT_FIRST (step_tac ctxt arg) THEN
TRYALL (resolve_tac ctxt [red_if_equal]);
(*Conditional normalization tactic*)
fun cond_norm_tac ctxt arg = REPEAT_FIRST (cond_step_tac ctxt arg) THEN
TRYALL (resolve_tac ctxt [red_if_equal]);
end;
end;