(* Title : CLim.thy
Author : Jacques D. Fleuriot
Copyright : 2001 University of Edinburgh
Conversion to Isar and new proofs by Lawrence C Paulson, 2004
*)
header{*Limits, Continuity and Differentiation for Complex Functions*}
theory CLim
imports CStar
begin
(*not in simpset?*)
declare hypreal_epsilon_not_zero [simp]
(*??generalize*)
lemma lemma_complex_mult_inverse_squared [simp]:
"x \<noteq> (0::complex) \<Longrightarrow> (x * inverse(x) ^ 2) = inverse x"
by (simp add: numeral_2_eq_2)
text{*Changing the quantified variable. Install earlier?*}
lemma all_shift: "(\<forall>x::'a::comm_ring_1. P x) = (\<forall>x. P (x-a))";
apply auto
apply (drule_tac x="x+a" in spec)
apply (simp add: diff_minus add_assoc)
done
lemma complex_add_minus_iff [simp]: "(x + - a = (0::complex)) = (x=a)"
by (simp add: diff_eq_eq diff_minus [symmetric])
lemma complex_add_eq_0_iff [iff]: "(x+y = (0::complex)) = (y = -x)"
apply auto
apply (drule sym [THEN diff_eq_eq [THEN iffD2]], auto)
done
subsection{*Limit of Complex to Complex Function*}
lemma NSLIM_Re: "f -- a --NS> L ==> (%x. Re(f x)) -- a --NS> Re(L)"
by (simp add: NSLIM_def starfunC_approx_Re_Im_iff
hRe_hcomplex_of_complex)
lemma NSLIM_Im: "f -- a --NS> L ==> (%x. Im(f x)) -- a --NS> Im(L)"
by (simp add: NSLIM_def starfunC_approx_Re_Im_iff
hIm_hcomplex_of_complex)
(** get this result easily now **)
lemma LIM_Re:
fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
shows "f -- a --> L ==> (%x. Re(f x)) -- a --> Re(L)"
by (simp add: LIM_NSLIM_iff NSLIM_Re)
lemma LIM_Im:
fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
shows "f -- a --> L ==> (%x. Im(f x)) -- a --> Im(L)"
by (simp add: LIM_NSLIM_iff NSLIM_Im)
lemma LIM_cnj:
fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
shows "f -- a --> L ==> (%x. cnj (f x)) -- a --> cnj L"
by (simp add: LIM_eq complex_cnj_diff [symmetric])
lemma LIM_cnj_iff:
fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
shows "((%x. cnj (f x)) -- a --> cnj L) = (f -- a --> L)"
by (simp add: LIM_eq complex_cnj_diff [symmetric])
lemma starfun_norm: "( *f* (\<lambda>x. norm (f x))) = (\<lambda>x. hnorm (( *f* f) x))"
by transfer (rule refl)
lemma star_of_Re [simp]: "star_of (Re x) = hRe (star_of x)"
by transfer (rule refl)
lemma star_of_Im [simp]: "star_of (Im x) = hIm (star_of x)"
by transfer (rule refl)
text""
(** another equivalence result **)
lemma NSCLIM_NSCRLIM_iff:
"(f -- x --NS> L) = ((%y. cmod(f y - L)) -- x --NS> 0)"
by (simp add: NSLIM_def starfun_norm
approx_approx_zero_iff [symmetric] approx_minus_iff [symmetric])
(** much, much easier standard proof **)
lemma CLIM_CRLIM_iff:
fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
shows "(f -- x --> L) = ((%y. cmod(f y - L)) -- x --> 0)"
by (simp add: LIM_eq)
(* so this is nicer nonstandard proof *)
lemma NSCLIM_NSCRLIM_iff2:
"(f -- x --NS> L) = ((%y. cmod(f y - L)) -- x --NS> 0)"
by (simp add: LIM_NSLIM_iff [symmetric] CLIM_CRLIM_iff)
lemma NSLIM_NSCRLIM_Re_Im_iff:
"(f -- a --NS> L) = ((%x. Re(f x)) -- a --NS> Re(L) &
(%x. Im(f x)) -- a --NS> Im(L))"
apply (auto intro: NSLIM_Re NSLIM_Im)
apply (auto simp add: NSLIM_def starfun_Re starfun_Im)
apply (auto dest!: spec)
apply (simp add: hcomplex_approx_iff)
done
lemma LIM_CRLIM_Re_Im_iff:
fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
shows "(f -- a --> L) = ((%x. Re(f x)) -- a --> Re(L) &
(%x. Im(f x)) -- a --> Im(L))"
by (simp add: LIM_NSLIM_iff NSLIM_NSCRLIM_Re_Im_iff)
subsection{*Continuity*}
lemma NSLIM_isContc_iff:
"(f -- a --NS> f a) = ((%h. f(a + h)) -- 0 --NS> f a)"
by (rule NSLIM_h_iff)
subsection{*Functions from Complex to Reals*}
lemma isNSContCR_cmod [simp]: "isNSCont cmod (a)"
by (auto intro: approx_hnorm
simp add: starfunCR_cmod hcmod_hcomplex_of_complex [symmetric]
isNSCont_def)
lemma isContCR_cmod [simp]: "isCont cmod (a)"
by (simp add: isNSCont_isCont_iff [symmetric])
lemma isCont_Re:
fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
shows "isCont f a ==> isCont (%x. Re (f x)) a"
by (simp add: isCont_def LIM_Re)
lemma isCont_Im:
fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
shows "isCont f a ==> isCont (%x. Im (f x)) a"
by (simp add: isCont_def LIM_Im)
subsection{* Differentiation of Natural Number Powers*}
lemma CDERIV_pow [simp]:
"DERIV (%x. x ^ n) x :> (complex_of_real (real n)) * (x ^ (n - Suc 0))"
apply (induct n)
apply (drule_tac [2] DERIV_ident [THEN DERIV_mult])
apply (auto simp add: left_distrib real_of_nat_Suc)
apply (case_tac "n")
apply (auto simp add: mult_ac add_commute)
done
text{*Nonstandard version*}
lemma NSCDERIV_pow:
"NSDERIV (%x. x ^ n) x :> complex_of_real (real n) * (x ^ (n - 1))"
by (simp add: NSDERIV_DERIV_iff)
text{*Can't relax the premise @{term "x \<noteq> 0"}: it isn't continuous at zero*}
lemma NSCDERIV_inverse:
"(x::complex) \<noteq> 0 ==> NSDERIV (%x. inverse(x)) x :> (- (inverse x ^ 2))"
unfolding numeral_2_eq_2
by (rule NSDERIV_inverse)
lemma CDERIV_inverse:
"(x::complex) \<noteq> 0 ==> DERIV (%x. inverse(x)) x :> (-(inverse x ^ 2))"
unfolding numeral_2_eq_2
by (rule DERIV_inverse)
subsection{*Derivative of Reciprocals (Function @{term inverse})*}
lemma CDERIV_inverse_fun:
"[| DERIV f x :> d; f(x) \<noteq> (0::complex) |]
==> DERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ 2)))"
unfolding numeral_2_eq_2
by (rule DERIV_inverse_fun)
lemma NSCDERIV_inverse_fun:
"[| NSDERIV f x :> d; f(x) \<noteq> (0::complex) |]
==> NSDERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ 2)))"
unfolding numeral_2_eq_2
by (rule NSDERIV_inverse_fun)
subsection{* Derivative of Quotient*}
lemma CDERIV_quotient:
"[| DERIV f x :> d; DERIV g x :> e; g(x) \<noteq> (0::complex) |]
==> DERIV (%y. f(y) / (g y)) x :> (d*g(x) - (e*f(x))) / (g(x) ^ 2)"
unfolding numeral_2_eq_2
by (rule DERIV_quotient)
lemma NSCDERIV_quotient:
"[| NSDERIV f x :> d; NSDERIV g x :> e; g(x) \<noteq> (0::complex) |]
==> NSDERIV (%y. f(y) / (g y)) x :> (d*g(x) - (e*f(x))) / (g(x) ^ 2)"
unfolding numeral_2_eq_2
by (rule NSDERIV_quotient)
subsection{*Caratheodory Formulation of Derivative at a Point: Standard Proof*}
lemma CARAT_CDERIVD:
"(\<forall>z. f z - f x = g z * (z - x)) & isNSCont g x & g x = l
==> NSDERIV f x :> l"
by clarify (rule CARAT_DERIVD)
end