(* Title: HOLCF/Lift2.ML
ID: $Id$
Author: Olaf Mueller
Copyright 1996 Technische Universitaet Muenchen
Class Instance lift::(term)po
*)
(* for compatibility with old HOLCF-Version *)
Goal "(op <<)=(%x y. x=y|x=Undef)";
by (fold_goals_tac [less_lift_def]);
by (rtac refl 1);
qed "inst_lift_po";
(* -------------------------------------------------------------------------*)
(* type ('a)lift is pointed *)
(* ------------------------------------------------------------------------ *)
Goal "Undef << x";
by (simp_tac (simpset() addsimps [inst_lift_po]) 1);
qed"minimal_lift";
bind_thm ("UU_lift_def",minimal_lift RS minimal2UU RS sym);
AddIffs [minimal_lift];
Goal "EX x::'a lift. ALL y. x<<y";
by (res_inst_tac [("x","Undef")] exI 1);
by (rtac (minimal_lift RS allI) 1);
qed "least_lift";
(* ------------------------------------------------------------------------ *)
(* ('a)lift is a cpo *)
(* ------------------------------------------------------------------------ *)
(* The following Lemmata have already been proved in Pcpo.ML and Fix.ML,
but there class pcpo is assumed, although only po is necessary and a
least element. Therefore they are redone here for the po lift with
least element Undef. *)
(* Tailoring notUU_I of Pcpo.ML to Undef *)
Goal "[| x<<y; ~x=Undef |] ==> ~y=Undef";
by (blast_tac (claset() addIs [antisym_less]) 1);
qed"notUndef_I";
(* Tailoring chain_mono2 of Pcpo.ML to Undef *)
Goal "[| EX j.~Y(j)=Undef; chain(Y::nat=>('a)lift) |] \
\ ==> EX j. ALL i. j<i-->~Y(i)=Undef";
by Safe_tac;
by (Step_tac 1);
by (strip_tac 1);
by (rtac notUndef_I 1);
by (atac 2);
by (etac (chain_mono) 1);
by (atac 1);
qed"chain_mono2_po";
(* Tailoring flat_imp_chfin of Fix.ML to lift *)
Goal "(ALL Y. chain(Y::nat=>('a)lift)-->(EX n. max_in_chain n Y))";
by (rewtac max_in_chain_def);
by (strip_tac 1);
by (res_inst_tac [("P","ALL i. Y(i)=Undef")] case_split_thm 1);
by (res_inst_tac [("x","0")] exI 1);
by (strip_tac 1);
by (rtac trans 1);
by (etac spec 1);
by (rtac sym 1);
by (etac spec 1);
by (subgoal_tac "ALL x y. x<<(y::('a)lift) --> x=Undef | x=y" 1);
by (simp_tac (simpset() addsimps [inst_lift_po]) 2);
by (rtac (chain_mono2_po RS exE) 1);
by (Fast_tac 1);
by (atac 1);
by (res_inst_tac [("x","Suc(x)")] exI 1);
by (strip_tac 1);
by (rtac disjE 1);
by (atac 3);
by (rtac mp 1);
by (dtac spec 1);
by (etac spec 1);
by (etac (le_imp_less_or_eq RS disjE) 1);
by (etac (chain_mono) 1);
by Auto_tac;
qed"flat_imp_chfin_poo";
(* Main Lemma: cpo_lift *)
Goal "chain(Y::nat=>('a)lift) ==> EX x. range(Y) <<|x";
by (cut_inst_tac [] flat_imp_chfin_poo 1);
by (blast_tac (claset() addIs [lub_finch1]) 1);
qed"cpo_lift";