(* Title: HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
Author: Lukas Bulwahn, TU Muenchen
Auxilary functions for predicate compiler.
*)
(* FIXME proper signature *)
structure Predicate_Compile_Aux =
struct
(* mode *)
type smode = (int * int list option) list
type mode = smode option list * smode
datatype tmode = Mode of mode * smode * tmode option list;
fun string_of_smode js =
commas (map
(fn (i, is) =>
string_of_int i ^ (case is of NONE => ""
| SOME is => "p" ^ enclose "[" "]" (commas (map string_of_int is)))) js)
(* FIXME: remove! *)
fun string_of_mode (iss, is) = space_implode " -> " (map
(fn NONE => "X"
| SOME js => enclose "[" "]" (string_of_smode js))
(iss @ [SOME is]));
fun string_of_tmode (Mode (predmode, termmode, param_modes)) =
"predmode: " ^ (string_of_mode predmode) ^
(if null param_modes then "" else
"; " ^ "params: " ^ commas (map (the_default "NONE" o Option.map string_of_tmode) param_modes))
(* new datatype for mode *)
datatype mode' = Bool | Input | Output | Pair of mode' * mode' | Fun of mode' * mode'
(* equality of instantiatedness with respect to equivalences:
Pair Input Input == Input and Pair Output Output == Output *)
fun eq_mode' (Fun (m1, m2), Fun (m3, m4)) = eq_mode' (m1, m3) andalso eq_mode' (m2, m4)
| eq_mode' (Pair (m1, m2), Pair (m3, m4)) = eq_mode' (m1, m3) andalso eq_mode' (m2, m4)
| eq_mode' (Pair (m1, m2), Input) = eq_mode' (m1, Input) andalso eq_mode' (m2, Input)
| eq_mode' (Pair (m1, m2), Output) = eq_mode' (m1, Output) andalso eq_mode' (m2, Output)
| eq_mode' (Input, Pair (m1, m2)) = eq_mode' (Input, m1) andalso eq_mode' (Input, m2)
| eq_mode' (Output, Pair (m1, m2)) = eq_mode' (Output, m1) andalso eq_mode' (Output, m2)
| eq_mode' (Input, Input) = true
| eq_mode' (Output, Output) = true
| eq_mode' (Bool, Bool) = true
| eq_mode' _ = false
(* name: binder_modes? *)
fun strip_fun_mode (Fun (mode, mode')) = mode :: strip_fun_mode mode'
| strip_fun_mode Bool = []
| strip_fun_mode _ = error "Bad mode for strip_fun_mode"
fun dest_fun_mode (Fun (mode, mode')) = mode :: dest_fun_mode mode'
| dest_fun_mode mode = [mode]
fun dest_tuple_mode (Pair (mode, mode')) = mode :: dest_tuple_mode mode'
| dest_tuple_mode _ = []
fun string_of_mode' mode' =
let
fun string_of_mode1 Input = "i"
| string_of_mode1 Output = "o"
| string_of_mode1 Bool = "bool"
| string_of_mode1 mode = "(" ^ (string_of_mode3 mode) ^ ")"
and string_of_mode2 (Pair (m1, m2)) = string_of_mode3 m1 ^ " * " ^ string_of_mode2 m2
| string_of_mode2 mode = string_of_mode1 mode
and string_of_mode3 (Fun (m1, m2)) = string_of_mode2 m1 ^ " => " ^ string_of_mode3 m2
| string_of_mode3 mode = string_of_mode2 mode
in string_of_mode3 mode' end
fun ascii_string_of_mode' mode' =
let
fun ascii_string_of_mode' Input = "i"
| ascii_string_of_mode' Output = "o"
| ascii_string_of_mode' Bool = "b"
| ascii_string_of_mode' (Pair (m1, m2)) =
"P" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
| ascii_string_of_mode' (Fun (m1, m2)) =
"F" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Fun m2 ^ "B"
and ascii_string_of_mode'_Fun (Fun (m1, m2)) =
ascii_string_of_mode' m1 ^ (if m2 = Bool then "" else "_" ^ ascii_string_of_mode'_Fun m2)
| ascii_string_of_mode'_Fun Bool = "B"
| ascii_string_of_mode'_Fun m = ascii_string_of_mode' m
and ascii_string_of_mode'_Pair (Pair (m1, m2)) =
ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
| ascii_string_of_mode'_Pair m = ascii_string_of_mode' m
in ascii_string_of_mode'_Fun mode' end
fun translate_mode T (iss, is) =
let
val Ts = binder_types T
val (Ts1, Ts2) = chop (length iss) Ts
fun translate_smode Ts is =
let
fun translate_arg (i, T) =
case AList.lookup (op =) is (i + 1) of
SOME NONE => Input
| SOME (SOME its) =>
let
fun translate_tuple (i, T) = if member (op =) its (i + 1) then Input else Output
in
foldr1 Pair (map_index translate_tuple (HOLogic.strip_tupleT T))
end
| NONE => Output
in map_index translate_arg Ts end
fun mk_mode arg_modes = foldr1 Fun (arg_modes @ [Bool])
val param_modes =
map (fn (T, NONE) => Input | (T, SOME is) => mk_mode (translate_smode (binder_types T) is))
(Ts1 ~~ iss)
in
mk_mode (param_modes @ translate_smode Ts2 is)
end;
fun translate_mode' nparams mode' =
let
fun err () = error "translate_mode': given mode cannot be translated"
val (m1, m2) = chop nparams (strip_fun_mode mode')
val translate_to_tupled_mode =
(map_filter I) o (map_index (fn (i, m) =>
if eq_mode' (m, Input) then SOME (i + 1)
else if eq_mode' (m, Output) then NONE
else err ()))
val translate_to_smode =
(map_filter I) o (map_index (fn (i, m) =>
if eq_mode' (m, Input) then SOME (i + 1, NONE)
else if eq_mode' (m, Output) then NONE
else SOME (i + 1, SOME (translate_to_tupled_mode (dest_tuple_mode m)))))
fun translate_to_param_mode m =
case rev (dest_fun_mode m) of
Bool :: _ :: _ => SOME (translate_to_smode (strip_fun_mode m))
| _ => if eq_mode' (m, Input) then NONE else err ()
in
(map translate_to_param_mode m1, translate_to_smode m2)
end
fun string_of_mode thy constname mode =
string_of_mode' (translate_mode (Sign.the_const_type thy constname) mode)
(* general syntactic functions *)
(*Like dest_conj, but flattens conjunctions however nested*)
fun conjuncts_aux (Const ("op &", _) $ t $ t') conjs = conjuncts_aux t (conjuncts_aux t' conjs)
| conjuncts_aux t conjs = t::conjs;
fun conjuncts t = conjuncts_aux t [];
fun is_equationlike_term (Const ("==", _) $ _ $ _) = true
| is_equationlike_term (Const ("Trueprop", _) $ (Const ("op =", _) $ _ $ _)) = true
| is_equationlike_term _ = false
val is_equationlike = is_equationlike_term o prop_of
fun is_pred_equation_term (Const ("==", _) $ u $ v) =
(fastype_of u = @{typ bool}) andalso (fastype_of v = @{typ bool})
| is_pred_equation_term _ = false
val is_pred_equation = is_pred_equation_term o prop_of
fun is_intro_term constname t =
case fst (strip_comb (HOLogic.dest_Trueprop (Logic.strip_imp_concl t))) of
Const (c, _) => c = constname
| _ => false
fun is_intro constname t = is_intro_term constname (prop_of t)
fun is_pred thy constname =
let
val T = (Sign.the_const_type thy constname)
in body_type T = @{typ "bool"} end;
fun is_predT (T as Type("fun", [_, _])) = (snd (strip_type T) = HOLogic.boolT)
| is_predT _ = false
(* guessing number of parameters *)
fun find_indexes pred xs =
let
fun find is n [] = is
| find is n (x :: xs) = find (if pred x then (n :: is) else is) (n + 1) xs;
in rev (find [] 0 xs) end;
fun guess_nparams T =
let
val argTs = binder_types T
val nparams = fold Integer.max
(map (fn x => x + 1) (find_indexes is_predT argTs)) 0
in nparams end;
(*** check if a term contains only constructor functions ***)
(* FIXME: constructor terms are supposed to be seen in the way the code generator
sees constructors.*)
fun is_constrt thy =
let
val cnstrs = flat (maps
(map (fn (_, (Tname, _, cs)) => map (apsnd (rpair Tname o length)) cs) o #descr o snd)
(Symtab.dest (Datatype.get_all thy)));
fun check t = (case strip_comb t of
(Free _, []) => true
| (Const (s, T), ts) => (case (AList.lookup (op =) cnstrs s, body_type T) of
(SOME (i, Tname), Type (Tname', _)) => length ts = i andalso Tname = Tname' andalso forall check ts
| _ => false)
| _ => false)
in check end;
fun strip_ex (Const ("Ex", _) $ Abs (x, T, t)) =
let
val (xTs, t') = strip_ex t
in
((x, T) :: xTs, t')
end
| strip_ex t = ([], t)
fun focus_ex t nctxt =
let
val ((xs, Ts), t') = apfst split_list (strip_ex t)
val (xs', nctxt') = Name.variants xs nctxt;
val ps' = xs' ~~ Ts;
val vs = map Free ps';
val t'' = Term.subst_bounds (rev vs, t');
in ((ps', t''), nctxt') end;
(* introduction rule combinators *)
(* combinators to apply a function to all literals of an introduction rules *)
fun map_atoms f intro =
let
val (literals, head) = Logic.strip_horn intro
fun appl t = (case t of
(@{term "Not"} $ t') => HOLogic.mk_not (f t')
| _ => f t)
in
Logic.list_implies
(map (HOLogic.mk_Trueprop o appl o HOLogic.dest_Trueprop) literals, head)
end
fun fold_atoms f intro s =
let
val (literals, head) = Logic.strip_horn intro
fun appl t s = (case t of
(@{term "Not"} $ t') => f t' s
| _ => f t s)
in fold appl (map HOLogic.dest_Trueprop literals) s end
fun fold_map_atoms f intro s =
let
val (literals, head) = Logic.strip_horn intro
fun appl t s = (case t of
(@{term "Not"} $ t') => apfst HOLogic.mk_not (f t' s)
| _ => f t s)
val (literals', s') = fold_map appl (map HOLogic.dest_Trueprop literals) s
in
(Logic.list_implies (map HOLogic.mk_Trueprop literals', head), s')
end;
fun maps_premises f intro =
let
val (premises, head) = Logic.strip_horn intro
in
Logic.list_implies (maps f premises, head)
end
(* lifting term operations to theorems *)
fun map_term thy f th =
Skip_Proof.make_thm thy (f (prop_of th))
(*
fun equals_conv lhs_cv rhs_cv ct =
case Thm.term_of ct of
Const ("==", _) $ _ $ _ => Conv.arg_conv cv ct
| _ => error "equals_conv"
*)
(* Different options for compiler *)
datatype options = Options of {
expected_modes : (string * mode' list) option,
proposed_modes : (string * mode' list) option,
proposed_names : ((string * mode') * string) list,
show_steps : bool,
show_proof_trace : bool,
show_intermediate_results : bool,
show_mode_inference : bool,
show_modes : bool,
show_compilation : bool,
skip_proof : bool,
inductify : bool,
random : bool,
depth_limited : bool,
annotated : bool
};
fun expected_modes (Options opt) = #expected_modes opt
fun proposed_modes (Options opt) = #proposed_modes opt
fun proposed_names (Options opt) name mode = AList.lookup (eq_pair (op =) eq_mode')
(#proposed_names opt) (name, mode)
fun show_steps (Options opt) = #show_steps opt
fun show_intermediate_results (Options opt) = #show_intermediate_results opt
fun show_proof_trace (Options opt) = #show_proof_trace opt
fun show_modes (Options opt) = #show_modes opt
fun show_mode_inference (Options opt) = #show_mode_inference opt
fun show_compilation (Options opt) = #show_compilation opt
fun skip_proof (Options opt) = #skip_proof opt
fun is_inductify (Options opt) = #inductify opt
fun is_random (Options opt) = #random opt
fun is_depth_limited (Options opt) = #depth_limited opt
fun is_annotated (Options opt) = #annotated opt
val default_options = Options {
expected_modes = NONE,
proposed_modes = NONE,
proposed_names = [],
show_steps = false,
show_intermediate_results = false,
show_proof_trace = false,
show_modes = false,
show_mode_inference = false,
show_compilation = false,
skip_proof = false,
inductify = false,
random = false,
depth_limited = false,
annotated = false
}
fun print_step options s =
if show_steps options then tracing s else ()
(* tuple processing *)
fun expand_tuples thy intro =
let
fun rewrite_args [] (pats, intro_t, ctxt) = (pats, intro_t, ctxt)
| rewrite_args (arg::args) (pats, intro_t, ctxt) =
(case HOLogic.strip_tupleT (fastype_of arg) of
(Ts as _ :: _ :: _) =>
let
fun rewrite_arg' (Const ("Pair", _) $ _ $ t2, Type ("*", [_, T2]))
(args, (pats, intro_t, ctxt)) = rewrite_arg' (t2, T2) (args, (pats, intro_t, ctxt))
| rewrite_arg' (t, Type ("*", [T1, T2])) (args, (pats, intro_t, ctxt)) =
let
val ([x, y], ctxt') = Variable.variant_fixes ["x", "y"] ctxt
val pat = (t, HOLogic.mk_prod (Free (x, T1), Free (y, T2)))
val intro_t' = Pattern.rewrite_term thy [pat] [] intro_t
val args' = map (Pattern.rewrite_term thy [pat] []) args
in
rewrite_arg' (Free (y, T2), T2) (args', (pat::pats, intro_t', ctxt'))
end
| rewrite_arg' _ (args, (pats, intro_t, ctxt)) = (args, (pats, intro_t, ctxt))
val (args', (pats, intro_t', ctxt')) = rewrite_arg' (arg, fastype_of arg)
(args, (pats, intro_t, ctxt))
in
rewrite_args args' (pats, intro_t', ctxt')
end
| _ => rewrite_args args (pats, intro_t, ctxt))
fun rewrite_prem atom =
let
val (_, args) = strip_comb atom
in rewrite_args args end
val ctxt = ProofContext.init thy
val (((T_insts, t_insts), [intro']), ctxt1) = Variable.import false [intro] ctxt
val intro_t = prop_of intro'
val concl = Logic.strip_imp_concl intro_t
val (p, args) = strip_comb (HOLogic.dest_Trueprop concl)
val (pats', intro_t', ctxt2) = rewrite_args args ([], intro_t, ctxt1)
val (pats', intro_t', ctxt3) =
fold_atoms rewrite_prem intro_t' (pats', intro_t', ctxt2)
fun rewrite_pat (ct1, ct2) =
(ct1, cterm_of thy (Pattern.rewrite_term thy pats' [] (term_of ct2)))
val t_insts' = map rewrite_pat t_insts
val intro'' = Thm.instantiate (T_insts, t_insts') intro
val [intro'''] = Variable.export ctxt3 ctxt [intro'']
val intro'''' = Simplifier.full_simplify
(HOL_basic_ss addsimps [@{thm fst_conv}, @{thm snd_conv}, @{thm Pair_eq}])
intro'''
(* splitting conjunctions introduced by Pair_eq*)
fun split_conj prem =
map HOLogic.mk_Trueprop (conjuncts (HOLogic.dest_Trueprop prem))
val intro''''' = map_term thy (maps_premises split_conj) intro''''
in
intro'''''
end
end;