(* Title: HOL/ATP_Linkup.thy
Author: Lawrence C Paulson
Author: Jia Meng, NICTA
Author: Fabian Immler, TUM
*)
header {* The Isabelle-ATP Linkup *}
theory ATP_Linkup
imports Plain Hilbert_Choice
uses
"Tools/polyhash.ML"
"Tools/Sledgehammer/sledgehammer_fol_clause.ML"
("Tools/Sledgehammer/sledgehammer_fact_preprocessor.ML")
("Tools/Sledgehammer/sledgehammer_hol_clause.ML")
("Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML")
("Tools/Sledgehammer/sledgehammer_fact_filter.ML")
("Tools/ATP_Manager/atp_manager.ML")
("Tools/ATP_Manager/atp_wrapper.ML")
("Tools/ATP_Manager/atp_minimal.ML")
"~~/src/Tools/Metis/metis.ML"
("Tools/Sledgehammer/metis_tactics.ML")
begin
definition COMBI :: "'a => 'a"
where "COMBI P == P"
definition COMBK :: "'a => 'b => 'a"
where "COMBK P Q == P"
definition COMBB :: "('b => 'c) => ('a => 'b) => 'a => 'c"
where "COMBB P Q R == P (Q R)"
definition COMBC :: "('a => 'b => 'c) => 'b => 'a => 'c"
where "COMBC P Q R == P R Q"
definition COMBS :: "('a => 'b => 'c) => ('a => 'b) => 'a => 'c"
where "COMBS P Q R == P R (Q R)"
definition fequal :: "'a => 'a => bool"
where "fequal X Y == (X=Y)"
lemma fequal_imp_equal: "fequal X Y ==> X=Y"
by (simp add: fequal_def)
lemma equal_imp_fequal: "X=Y ==> fequal X Y"
by (simp add: fequal_def)
text{*These two represent the equivalence between Boolean equality and iff.
They can't be converted to clauses automatically, as the iff would be
expanded...*}
lemma iff_positive: "P | Q | P=Q"
by blast
lemma iff_negative: "~P | ~Q | P=Q"
by blast
text{*Theorems for translation to combinators*}
lemma abs_S: "(%x. (f x) (g x)) == COMBS f g"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBS_def)
done
lemma abs_I: "(%x. x) == COMBI"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBI_def)
done
lemma abs_K: "(%x. y) == COMBK y"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBK_def)
done
lemma abs_B: "(%x. a (g x)) == COMBB a g"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBB_def)
done
lemma abs_C: "(%x. (f x) b) == COMBC f b"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBC_def)
done
subsection {* Setup of external ATPs *}
use "Tools/Sledgehammer/sledgehammer_fact_preprocessor.ML"
setup Res_Axioms.setup
use "Tools/Sledgehammer/sledgehammer_hol_clause.ML"
use "Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML"
setup Res_Reconstruct.setup
use "Tools/Sledgehammer/sledgehammer_fact_filter.ML"
use "Tools/ATP_Manager/atp_wrapper.ML"
setup ATP_Wrapper.setup
use "Tools/ATP_Manager/atp_manager.ML"
use "Tools/ATP_Manager/atp_minimal.ML"
text {* basic provers *}
setup {* ATP_Manager.add_prover ATP_Wrapper.spass *}
setup {* ATP_Manager.add_prover ATP_Wrapper.vampire *}
setup {* ATP_Manager.add_prover ATP_Wrapper.eprover *}
text {* provers with stuctured output *}
setup {* ATP_Manager.add_prover ATP_Wrapper.vampire_full *}
setup {* ATP_Manager.add_prover ATP_Wrapper.eprover_full *}
text {* on some problems better results *}
setup {* ATP_Manager.add_prover ATP_Wrapper.spass_no_tc *}
text {* remote provers via SystemOnTPTP *}
setup {* ATP_Manager.add_prover ATP_Wrapper.remote_vampire *}
setup {* ATP_Manager.add_prover ATP_Wrapper.remote_spass *}
setup {* ATP_Manager.add_prover ATP_Wrapper.remote_eprover *}
subsection {* The Metis prover *}
use "Tools/Sledgehammer/metis_tactics.ML"
setup MetisTools.setup
end