(* Title : Real/RealDef.thy
ID : $Id$
Author : Jacques D. Fleuriot
Copyright : 1998 University of Cambridge
Description : The reals
*)
RealDef = PReal +
constdefs
realrel :: "((preal * preal) * (preal * preal)) set"
"realrel == {p. ? x1 y1 x2 y2. p = ((x1,y1),(x2,y2)) & x1+y2 = x2+y1}"
typedef real = "UNIV//realrel" (Equiv.quotient_def)
instance
real :: {ord, zero, plus, times, minus}
consts
"1r" :: real ("1r")
defs
real_zero_def
"0 == Abs_real(realrel^^{(preal_of_prat(prat_of_pnat 1p),
preal_of_prat(prat_of_pnat 1p))})"
real_one_def
"1r == Abs_real(realrel^^{(preal_of_prat(prat_of_pnat 1p) +
preal_of_prat(prat_of_pnat 1p),preal_of_prat(prat_of_pnat 1p))})"
real_minus_def
"- R == Abs_real(UN (x,y):Rep_real(R). realrel^^{(y,x)})"
real_diff_def "x - y == x + (- y :: real)"
constdefs
real_of_preal :: preal => real
"real_of_preal m ==
Abs_real(realrel^^{(m+preal_of_prat(prat_of_pnat 1p),
preal_of_prat(prat_of_pnat 1p))})"
rinv :: real => real
"rinv(R) == (@S. R ~= 0 & S*R = 1r)"
real_of_posnat :: nat => real
"real_of_posnat n == real_of_preal(preal_of_prat(prat_of_pnat(pnat_of_nat n)))"
real_of_nat :: nat => real
"real_of_nat n == real_of_posnat n + (-1r)"
defs
real_add_def
"P + Q == Abs_real(UN p1:Rep_real(P). UN p2:Rep_real(Q).
(%(x1,y1). (%(x2,y2). realrel^^{(x1+x2, y1+y2)}) p2) p1)"
real_mult_def
"P * Q == Abs_real(UN p1:Rep_real(P). UN p2:Rep_real(Q).
(%(x1,y1). (%(x2,y2). realrel^^{(x1*x2+y1*y2,x1*y2+x2*y1)}) p2) p1)"
real_less_def
"P < Q == EX x1 y1 x2 y2. x1 + y2 < x2 + y1 &
(x1,y1):Rep_real(P) &
(x2,y2):Rep_real(Q)"
real_le_def
"P <= (Q::real) == ~(Q < P)"
end