src/ZF/ROOT
author wenzelm
Thu, 19 Jul 2012 14:24:40 +0200
changeset 48349 a78e5d399599
parent 48336 3c55bfad22eb
child 48462 424fd5364f15
permissions -rw-r--r--
support Session.Queue with ordering and dependencies;

session ZF! (10) in "." = FOL +
  description {*
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1995  University of Cambridge

    Zermelo-Fraenkel Set Theory on top of classical First-Order Logic.

    This theory is the work of Martin Coen, Philippe Noel and Lawrence Paulson.
  *}
  options [document_graph]
  theories Main Main_ZFC
  files "document/root.tex"

session AC = ZF +
  description {*
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1995  University of Cambridge

    Proofs of AC-equivalences, due to Krzysztof Grabczewski.
  *}
  options [document_graph]
  theories WO6_WO1 WO1_WO7 AC7_AC9 WO1_AC AC15_WO6
    WO2_AC16 AC16_WO4 AC17_AC1 AC18_AC19 DC
  files "document/root.tex" "document/root.bib"

session Coind = ZF +
  description {*
    Author:     Jacob Frost, Cambridge University Computer Laboratory
    Copyright   1995  University of Cambridge

    Coind -- A Coinduction Example.

    Based upon the article
        Robin Milner and Mads Tofte,
        Co-induction in Relational Semantics,
        Theoretical Computer Science 87 (1991), pages 209-220.

    Written up as
        Jacob Frost, A Case Study of Co_induction in Isabelle
        Report, Computer Lab, University of Cambridge (1995).
  *}
  theories ECR

session Constructible = ZF +
  description {* Inner Models, Absoluteness and Consistency Proofs. *}
  options [document_graph]
  theories DPow_absolute AC_in_L Rank_Separation
  files "document/root.tex" "document/root.bib"

session IMP = ZF +
  description {*
    Author:     Heiko Loetzbeyer & Robert Sandner, TUM
    Copyright   1994 TUM

    Formalization of the denotational and operational semantics of a
    simple while-language, including an equivalence proof.

    The whole development essentially formalizes/transcribes
    chapters 2 and 5 of

    Glynn Winskel. The Formal Semantics of Programming Languages.
    MIT Press, 1993.
  *}
  theories Equiv
  files "document/root.tex" "document/root.bib"

session Induct = ZF +
  description {*
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   2001  University of Cambridge

    Inductive definitions.
  *}
  theories
    (** Datatypes **)
    Datatypes       (*sample datatypes*)
    Binary_Trees    (*binary trees*)
    Term            (*recursion over the list functor*)
    Ntree           (*variable-branching trees; function demo*)
    Tree_Forest     (*mutual recursion*)
    Brouwer         (*Infinite-branching trees*)
    Mutil           (*mutilated chess board*)

    (*by Sidi Ehmety: Multisets.  A parent is FoldSet, the "fold" function for
    finite sets*)
    Multiset
    Rmap            (*mapping a relation over a list*)
    PropLog         (*completeness of propositional logic*)

    (*two Coq examples by Christine Paulin-Mohring*)
    ListN
    Acc

    Comb            (*Combinatory Logic example*)
    Primrec         (*Primitive recursive functions*)
  files "document/root.tex"

session Resid = ZF +
  description {*
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1995  University of Cambridge

    Residuals -- a proof of the Church-Rosser Theorem for the
    untyped lambda-calculus.

    By Ole Rasmussen, following the Coq proof given in

    Gerard Huet.  Residual Theory in Lambda-Calculus: A Formal Development.
    J. Functional Programming 4(3) 1994, 371-394.
  *}
  theories Confluence

session UNITY = ZF +
  description {*
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1998  University of Cambridge

    ZF/UNITY proofs.
  *}
  theories
    (*Simple examples: no composition*)
    Mutex

    (*Basic meta-theory*)
    Guar

    (*Prefix relation; the Allocator example*)
    Distributor Merge ClientImpl AllocImpl

session ex = ZF +
  description {*
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

    Miscellaneous examples for Zermelo-Fraenkel Set Theory.
  *}
  theories
    misc
    Ring             (*abstract algebra*)
    Commutation      (*abstract Church-Rosser theory*)
    Primes           (*GCD theory*)
    NatSum           (*Summing integers, squares, cubes, etc.*)
    Ramsey           (*Simple form of Ramsey's theorem*)
    Limit            (*Inverse limit construction of domains*)
    BinEx            (*Binary integer arithmetic*)
    LList CoUnit     (*CoDatatypes*)