(* Author: Florian Haftmann, TU Muenchen *)
header {* Finite types as explicit enumerations *}
theory Enum
imports Map
begin
subsection {* Class @{text enum} *}
class enum =
fixes enum :: "'a list"
fixes enum_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
fixes enum_ex :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
assumes UNIV_enum: "UNIV = set enum"
and enum_distinct: "distinct enum"
assumes enum_all_UNIV: "enum_all P \<longleftrightarrow> Ball UNIV P"
assumes enum_ex_UNIV: "enum_ex P \<longleftrightarrow> Bex UNIV P"
-- {* tailored towards simple instantiation *}
begin
subclass finite proof
qed (simp add: UNIV_enum)
lemma enum_UNIV:
"set enum = UNIV"
by (simp only: UNIV_enum)
lemma in_enum: "x \<in> set enum"
by (simp add: enum_UNIV)
lemma enum_eq_I:
assumes "\<And>x. x \<in> set xs"
shows "set enum = set xs"
proof -
from assms UNIV_eq_I have "UNIV = set xs" by auto
with enum_UNIV show ?thesis by simp
qed
lemma card_UNIV_length_enum:
"card (UNIV :: 'a set) = length enum"
by (simp add: UNIV_enum distinct_card enum_distinct)
lemma enum_all [simp]:
"enum_all = HOL.All"
by (simp add: fun_eq_iff enum_all_UNIV)
lemma enum_ex [simp]:
"enum_ex = HOL.Ex"
by (simp add: fun_eq_iff enum_ex_UNIV)
end
subsection {* Implementations using @{class enum} *}
subsubsection {* Unbounded operations and quantifiers *}
lemma Collect_code [code]:
"Collect P = set (filter P enum)"
by (simp add: enum_UNIV)
lemma vimage_code [code]:
"f -` B = set (filter (%x. f x : B) enum_class.enum)"
unfolding vimage_def Collect_code ..
definition card_UNIV :: "'a itself \<Rightarrow> nat"
where
[code del]: "card_UNIV TYPE('a) = card (UNIV :: 'a set)"
lemma [code]:
"card_UNIV TYPE('a :: enum) = card (set (Enum.enum :: 'a list))"
by (simp only: card_UNIV_def enum_UNIV)
lemma all_code [code]: "(\<forall>x. P x) \<longleftrightarrow> enum_all P"
by simp
lemma exists_code [code]: "(\<exists>x. P x) \<longleftrightarrow> enum_ex P"
by simp
lemma exists1_code [code]: "(\<exists>!x. P x) \<longleftrightarrow> list_ex1 P enum"
by (auto simp add: list_ex1_iff enum_UNIV)
subsubsection {* An executable choice operator *}
definition
[code del]: "enum_the = The"
lemma [code]:
"The P = (case filter P enum of [x] => x | _ => enum_the P)"
proof -
{
fix a
assume filter_enum: "filter P enum = [a]"
have "The P = a"
proof (rule the_equality)
fix x
assume "P x"
show "x = a"
proof (rule ccontr)
assume "x \<noteq> a"
from filter_enum obtain us vs
where enum_eq: "enum = us @ [a] @ vs"
and "\<forall> x \<in> set us. \<not> P x"
and "\<forall> x \<in> set vs. \<not> P x"
and "P a"
by (auto simp add: filter_eq_Cons_iff) (simp only: filter_empty_conv[symmetric])
with `P x` in_enum[of x, unfolded enum_eq] `x \<noteq> a` show "False" by auto
qed
next
from filter_enum show "P a" by (auto simp add: filter_eq_Cons_iff)
qed
}
from this show ?thesis
unfolding enum_the_def by (auto split: list.split)
qed
code_abort enum_the
code_printing
constant enum_the \<rightharpoonup> (Eval) "(fn '_ => raise Match)"
subsubsection {* Equality and order on functions *}
instantiation "fun" :: (enum, equal) equal
begin
definition
"HOL.equal f g \<longleftrightarrow> (\<forall>x \<in> set enum. f x = g x)"
instance proof
qed (simp_all add: equal_fun_def fun_eq_iff enum_UNIV)
end
lemma [code]:
"HOL.equal f g \<longleftrightarrow> enum_all (%x. f x = g x)"
by (auto simp add: equal fun_eq_iff)
lemma [code nbe]:
"HOL.equal (f :: _ \<Rightarrow> _) f \<longleftrightarrow> True"
by (fact equal_refl)
lemma order_fun [code]:
fixes f g :: "'a\<Colon>enum \<Rightarrow> 'b\<Colon>order"
shows "f \<le> g \<longleftrightarrow> enum_all (\<lambda>x. f x \<le> g x)"
and "f < g \<longleftrightarrow> f \<le> g \<and> enum_ex (\<lambda>x. f x \<noteq> g x)"
by (simp_all add: fun_eq_iff le_fun_def order_less_le)
subsubsection {* Operations on relations *}
lemma [code]:
"Id = image (\<lambda>x. (x, x)) (set Enum.enum)"
by (auto intro: imageI in_enum)
lemma tranclp_unfold [code, no_atp]:
"tranclp r a b \<longleftrightarrow> (a, b) \<in> trancl {(x, y). r x y}"
by (simp add: trancl_def)
lemma rtranclp_rtrancl_eq [code, no_atp]:
"rtranclp r x y \<longleftrightarrow> (x, y) \<in> rtrancl {(x, y). r x y}"
by (simp add: rtrancl_def)
lemma max_ext_eq [code]:
"max_ext R = {(X, Y). finite X \<and> finite Y \<and> Y \<noteq> {} \<and> (\<forall>x. x \<in> X \<longrightarrow> (\<exists>xa \<in> Y. (x, xa) \<in> R))}"
by (auto simp add: max_ext.simps)
lemma max_extp_eq [code]:
"max_extp r x y \<longleftrightarrow> (x, y) \<in> max_ext {(x, y). r x y}"
by (simp add: max_ext_def)
lemma mlex_eq [code]:
"f <*mlex*> R = {(x, y). f x < f y \<or> (f x \<le> f y \<and> (x, y) \<in> R)}"
by (auto simp add: mlex_prod_def)
lemma [code]:
fixes xs :: "('a::finite \<times> 'a) list"
shows "acc (set xs) = bacc (set xs) (card_UNIV TYPE('a))"
by (simp add: card_UNIV_def acc_bacc_eq)
lemma [code]:
"accp r = (\<lambda>x. x \<in> acc {(x, y). r x y})"
by (simp add: acc_def)
subsection {* Default instances for @{class enum} *}
lemma map_of_zip_enum_is_Some:
assumes "length ys = length (enum \<Colon> 'a\<Colon>enum list)"
shows "\<exists>y. map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x = Some y"
proof -
from assms have "x \<in> set (enum \<Colon> 'a\<Colon>enum list) \<longleftrightarrow>
(\<exists>y. map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x = Some y)"
by (auto intro!: map_of_zip_is_Some)
then show ?thesis using enum_UNIV by auto
qed
lemma map_of_zip_enum_inject:
fixes xs ys :: "'b\<Colon>enum list"
assumes length: "length xs = length (enum \<Colon> 'a\<Colon>enum list)"
"length ys = length (enum \<Colon> 'a\<Colon>enum list)"
and map_of: "the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys)"
shows "xs = ys"
proof -
have "map_of (zip (enum \<Colon> 'a list) xs) = map_of (zip (enum \<Colon> 'a list) ys)"
proof
fix x :: 'a
from length map_of_zip_enum_is_Some obtain y1 y2
where "map_of (zip (enum \<Colon> 'a list) xs) x = Some y1"
and "map_of (zip (enum \<Colon> 'a list) ys) x = Some y2" by blast
moreover from map_of
have "the (map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) x) = the (map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x)"
by (auto dest: fun_cong)
ultimately show "map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) x = map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x"
by simp
qed
with length enum_distinct show "xs = ys" by (rule map_of_zip_inject)
qed
definition all_n_lists :: "(('a :: enum) list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> bool"
where
"all_n_lists P n \<longleftrightarrow> (\<forall>xs \<in> set (List.n_lists n enum). P xs)"
lemma [code]:
"all_n_lists P n \<longleftrightarrow> (if n = 0 then P [] else enum_all (%x. all_n_lists (%xs. P (x # xs)) (n - 1)))"
unfolding all_n_lists_def enum_all
by (cases n) (auto simp add: enum_UNIV)
definition ex_n_lists :: "(('a :: enum) list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> bool"
where
"ex_n_lists P n \<longleftrightarrow> (\<exists>xs \<in> set (List.n_lists n enum). P xs)"
lemma [code]:
"ex_n_lists P n \<longleftrightarrow> (if n = 0 then P [] else enum_ex (%x. ex_n_lists (%xs. P (x # xs)) (n - 1)))"
unfolding ex_n_lists_def enum_ex
by (cases n) (auto simp add: enum_UNIV)
instantiation "fun" :: (enum, enum) enum
begin
definition
"enum = map (\<lambda>ys. the o map_of (zip (enum\<Colon>'a list) ys)) (List.n_lists (length (enum\<Colon>'a\<Colon>enum list)) enum)"
definition
"enum_all P = all_n_lists (\<lambda>bs. P (the o map_of (zip enum bs))) (length (enum :: 'a list))"
definition
"enum_ex P = ex_n_lists (\<lambda>bs. P (the o map_of (zip enum bs))) (length (enum :: 'a list))"
instance proof
show "UNIV = set (enum \<Colon> ('a \<Rightarrow> 'b) list)"
proof (rule UNIV_eq_I)
fix f :: "'a \<Rightarrow> 'b"
have "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
then show "f \<in> set enum"
by (auto simp add: enum_fun_def set_n_lists intro: in_enum)
qed
next
from map_of_zip_enum_inject
show "distinct (enum \<Colon> ('a \<Rightarrow> 'b) list)"
by (auto intro!: inj_onI simp add: enum_fun_def
distinct_map distinct_n_lists enum_distinct set_n_lists)
next
fix P
show "enum_all (P :: ('a \<Rightarrow> 'b) \<Rightarrow> bool) = Ball UNIV P"
proof
assume "enum_all P"
show "Ball UNIV P"
proof
fix f :: "'a \<Rightarrow> 'b"
have f: "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
from `enum_all P` have "P (the \<circ> map_of (zip enum (map f enum)))"
unfolding enum_all_fun_def all_n_lists_def
apply (simp add: set_n_lists)
apply (erule_tac x="map f enum" in allE)
apply (auto intro!: in_enum)
done
from this f show "P f" by auto
qed
next
assume "Ball UNIV P"
from this show "enum_all P"
unfolding enum_all_fun_def all_n_lists_def by auto
qed
next
fix P
show "enum_ex (P :: ('a \<Rightarrow> 'b) \<Rightarrow> bool) = Bex UNIV P"
proof
assume "enum_ex P"
from this show "Bex UNIV P"
unfolding enum_ex_fun_def ex_n_lists_def by auto
next
assume "Bex UNIV P"
from this obtain f where "P f" ..
have f: "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
from `P f` this have "P (the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum)))"
by auto
from this show "enum_ex P"
unfolding enum_ex_fun_def ex_n_lists_def
apply (auto simp add: set_n_lists)
apply (rule_tac x="map f enum" in exI)
apply (auto intro!: in_enum)
done
qed
qed
end
lemma enum_fun_code [code]: "enum = (let enum_a = (enum \<Colon> 'a\<Colon>{enum, equal} list)
in map (\<lambda>ys. the o map_of (zip enum_a ys)) (List.n_lists (length enum_a) enum))"
by (simp add: enum_fun_def Let_def)
lemma enum_all_fun_code [code]:
"enum_all P = (let enum_a = (enum :: 'a::{enum, equal} list)
in all_n_lists (\<lambda>bs. P (the o map_of (zip enum_a bs))) (length enum_a))"
by (simp only: enum_all_fun_def Let_def)
lemma enum_ex_fun_code [code]:
"enum_ex P = (let enum_a = (enum :: 'a::{enum, equal} list)
in ex_n_lists (\<lambda>bs. P (the o map_of (zip enum_a bs))) (length enum_a))"
by (simp only: enum_ex_fun_def Let_def)
instantiation set :: (enum) enum
begin
definition
"enum = map set (sublists enum)"
definition
"enum_all P \<longleftrightarrow> (\<forall>A\<in>set enum. P (A::'a set))"
definition
"enum_ex P \<longleftrightarrow> (\<exists>A\<in>set enum. P (A::'a set))"
instance proof
qed (simp_all add: enum_set_def enum_all_set_def enum_ex_set_def sublists_powset distinct_set_sublists
enum_distinct enum_UNIV)
end
instantiation unit :: enum
begin
definition
"enum = [()]"
definition
"enum_all P = P ()"
definition
"enum_ex P = P ()"
instance proof
qed (auto simp add: enum_unit_def enum_all_unit_def enum_ex_unit_def)
end
instantiation bool :: enum
begin
definition
"enum = [False, True]"
definition
"enum_all P \<longleftrightarrow> P False \<and> P True"
definition
"enum_ex P \<longleftrightarrow> P False \<or> P True"
instance proof
qed (simp_all only: enum_bool_def enum_all_bool_def enum_ex_bool_def UNIV_bool, simp_all)
end
instantiation prod :: (enum, enum) enum
begin
definition
"enum = List.product enum enum"
definition
"enum_all P = enum_all (%x. enum_all (%y. P (x, y)))"
definition
"enum_ex P = enum_ex (%x. enum_ex (%y. P (x, y)))"
instance by default
(simp_all add: enum_prod_def product_list_set distinct_product
enum_UNIV enum_distinct enum_all_prod_def enum_ex_prod_def)
end
instantiation sum :: (enum, enum) enum
begin
definition
"enum = map Inl enum @ map Inr enum"
definition
"enum_all P \<longleftrightarrow> enum_all (\<lambda>x. P (Inl x)) \<and> enum_all (\<lambda>x. P (Inr x))"
definition
"enum_ex P \<longleftrightarrow> enum_ex (\<lambda>x. P (Inl x)) \<or> enum_ex (\<lambda>x. P (Inr x))"
instance proof
qed (simp_all only: enum_sum_def enum_all_sum_def enum_ex_sum_def UNIV_sum,
auto simp add: enum_UNIV distinct_map enum_distinct)
end
instantiation option :: (enum) enum
begin
definition
"enum = None # map Some enum"
definition
"enum_all P \<longleftrightarrow> P None \<and> enum_all (\<lambda>x. P (Some x))"
definition
"enum_ex P \<longleftrightarrow> P None \<or> enum_ex (\<lambda>x. P (Some x))"
instance proof
qed (simp_all only: enum_option_def enum_all_option_def enum_ex_option_def UNIV_option_conv,
auto simp add: distinct_map enum_UNIV enum_distinct)
end
subsection {* Small finite types *}
text {* We define small finite types for the use in Quickcheck *}
datatype finite_1 = a\<^isub>1
notation (output) a\<^isub>1 ("a\<^isub>1")
lemma UNIV_finite_1:
"UNIV = {a\<^isub>1}"
by (auto intro: finite_1.exhaust)
instantiation finite_1 :: enum
begin
definition
"enum = [a\<^isub>1]"
definition
"enum_all P = P a\<^isub>1"
definition
"enum_ex P = P a\<^isub>1"
instance proof
qed (simp_all only: enum_finite_1_def enum_all_finite_1_def enum_ex_finite_1_def UNIV_finite_1, simp_all)
end
instantiation finite_1 :: linorder
begin
definition less_finite_1 :: "finite_1 \<Rightarrow> finite_1 \<Rightarrow> bool"
where
"x < (y :: finite_1) \<longleftrightarrow> False"
definition less_eq_finite_1 :: "finite_1 \<Rightarrow> finite_1 \<Rightarrow> bool"
where
"x \<le> (y :: finite_1) \<longleftrightarrow> True"
instance
apply (intro_classes)
apply (auto simp add: less_finite_1_def less_eq_finite_1_def)
apply (metis finite_1.exhaust)
done
end
hide_const (open) a\<^isub>1
datatype finite_2 = a\<^isub>1 | a\<^isub>2
notation (output) a\<^isub>1 ("a\<^isub>1")
notation (output) a\<^isub>2 ("a\<^isub>2")
lemma UNIV_finite_2:
"UNIV = {a\<^isub>1, a\<^isub>2}"
by (auto intro: finite_2.exhaust)
instantiation finite_2 :: enum
begin
definition
"enum = [a\<^isub>1, a\<^isub>2]"
definition
"enum_all P \<longleftrightarrow> P a\<^isub>1 \<and> P a\<^isub>2"
definition
"enum_ex P \<longleftrightarrow> P a\<^isub>1 \<or> P a\<^isub>2"
instance proof
qed (simp_all only: enum_finite_2_def enum_all_finite_2_def enum_ex_finite_2_def UNIV_finite_2, simp_all)
end
instantiation finite_2 :: linorder
begin
definition less_finite_2 :: "finite_2 \<Rightarrow> finite_2 \<Rightarrow> bool"
where
"x < y \<longleftrightarrow> x = a\<^isub>1 \<and> y = a\<^isub>2"
definition less_eq_finite_2 :: "finite_2 \<Rightarrow> finite_2 \<Rightarrow> bool"
where
"x \<le> y \<longleftrightarrow> x = y \<or> x < (y :: finite_2)"
instance
apply (intro_classes)
apply (auto simp add: less_finite_2_def less_eq_finite_2_def)
apply (metis finite_2.nchotomy)+
done
end
hide_const (open) a\<^isub>1 a\<^isub>2
datatype finite_3 = a\<^isub>1 | a\<^isub>2 | a\<^isub>3
notation (output) a\<^isub>1 ("a\<^isub>1")
notation (output) a\<^isub>2 ("a\<^isub>2")
notation (output) a\<^isub>3 ("a\<^isub>3")
lemma UNIV_finite_3:
"UNIV = {a\<^isub>1, a\<^isub>2, a\<^isub>3}"
by (auto intro: finite_3.exhaust)
instantiation finite_3 :: enum
begin
definition
"enum = [a\<^isub>1, a\<^isub>2, a\<^isub>3]"
definition
"enum_all P \<longleftrightarrow> P a\<^isub>1 \<and> P a\<^isub>2 \<and> P a\<^isub>3"
definition
"enum_ex P \<longleftrightarrow> P a\<^isub>1 \<or> P a\<^isub>2 \<or> P a\<^isub>3"
instance proof
qed (simp_all only: enum_finite_3_def enum_all_finite_3_def enum_ex_finite_3_def UNIV_finite_3, simp_all)
end
instantiation finite_3 :: linorder
begin
definition less_finite_3 :: "finite_3 \<Rightarrow> finite_3 \<Rightarrow> bool"
where
"x < y = (case x of a\<^isub>1 \<Rightarrow> y \<noteq> a\<^isub>1 | a\<^isub>2 \<Rightarrow> y = a\<^isub>3 | a\<^isub>3 \<Rightarrow> False)"
definition less_eq_finite_3 :: "finite_3 \<Rightarrow> finite_3 \<Rightarrow> bool"
where
"x \<le> y \<longleftrightarrow> x = y \<or> x < (y :: finite_3)"
instance proof (intro_classes)
qed (auto simp add: less_finite_3_def less_eq_finite_3_def split: finite_3.split_asm)
end
hide_const (open) a\<^isub>1 a\<^isub>2 a\<^isub>3
datatype finite_4 = a\<^isub>1 | a\<^isub>2 | a\<^isub>3 | a\<^isub>4
notation (output) a\<^isub>1 ("a\<^isub>1")
notation (output) a\<^isub>2 ("a\<^isub>2")
notation (output) a\<^isub>3 ("a\<^isub>3")
notation (output) a\<^isub>4 ("a\<^isub>4")
lemma UNIV_finite_4:
"UNIV = {a\<^isub>1, a\<^isub>2, a\<^isub>3, a\<^isub>4}"
by (auto intro: finite_4.exhaust)
instantiation finite_4 :: enum
begin
definition
"enum = [a\<^isub>1, a\<^isub>2, a\<^isub>3, a\<^isub>4]"
definition
"enum_all P \<longleftrightarrow> P a\<^isub>1 \<and> P a\<^isub>2 \<and> P a\<^isub>3 \<and> P a\<^isub>4"
definition
"enum_ex P \<longleftrightarrow> P a\<^isub>1 \<or> P a\<^isub>2 \<or> P a\<^isub>3 \<or> P a\<^isub>4"
instance proof
qed (simp_all only: enum_finite_4_def enum_all_finite_4_def enum_ex_finite_4_def UNIV_finite_4, simp_all)
end
hide_const (open) a\<^isub>1 a\<^isub>2 a\<^isub>3 a\<^isub>4
datatype finite_5 = a\<^isub>1 | a\<^isub>2 | a\<^isub>3 | a\<^isub>4 | a\<^isub>5
notation (output) a\<^isub>1 ("a\<^isub>1")
notation (output) a\<^isub>2 ("a\<^isub>2")
notation (output) a\<^isub>3 ("a\<^isub>3")
notation (output) a\<^isub>4 ("a\<^isub>4")
notation (output) a\<^isub>5 ("a\<^isub>5")
lemma UNIV_finite_5:
"UNIV = {a\<^isub>1, a\<^isub>2, a\<^isub>3, a\<^isub>4, a\<^isub>5}"
by (auto intro: finite_5.exhaust)
instantiation finite_5 :: enum
begin
definition
"enum = [a\<^isub>1, a\<^isub>2, a\<^isub>3, a\<^isub>4, a\<^isub>5]"
definition
"enum_all P \<longleftrightarrow> P a\<^isub>1 \<and> P a\<^isub>2 \<and> P a\<^isub>3 \<and> P a\<^isub>4 \<and> P a\<^isub>5"
definition
"enum_ex P \<longleftrightarrow> P a\<^isub>1 \<or> P a\<^isub>2 \<or> P a\<^isub>3 \<or> P a\<^isub>4 \<or> P a\<^isub>5"
instance proof
qed (simp_all only: enum_finite_5_def enum_all_finite_5_def enum_ex_finite_5_def UNIV_finite_5, simp_all)
end
hide_const (open) a\<^isub>1 a\<^isub>2 a\<^isub>3 a\<^isub>4 a\<^isub>5
subsection {* Closing up *}
hide_type (open) finite_1 finite_2 finite_3 finite_4 finite_5
hide_const (open) enum enum_all enum_ex all_n_lists ex_n_lists ntrancl
end