(* Title: HOL/IOA/NTP/Multiset.thy
ID: $Id$
Author: Tobias Nipkow & Konrad Slind
*)
header {* Axiomatic multisets *}
theory Multiset
imports Lemmas
begin
typedecl
'a multiset
consts
"{|}" :: "'a multiset" ("{|}")
addm :: "['a multiset, 'a] => 'a multiset"
delm :: "['a multiset, 'a] => 'a multiset"
countm :: "['a multiset, 'a => bool] => nat"
count :: "['a multiset, 'a] => nat"
axioms
delm_empty_def:
"delm {|} x = {|}"
delm_nonempty_def:
"delm (addm M x) y == (if x=y then M else addm (delm M y) x)"
countm_empty_def:
"countm {|} P == 0"
countm_nonempty_def:
"countm (addm M x) P == countm M P + (if P x then Suc 0 else 0)"
count_def:
"count M x == countm M (%y. y = x)"
"induction":
"[| P({|}); !!M x. P(M) ==> P(addm M x) |] ==> P(M)"
lemma count_empty:
"count {|} x = 0"
by (simp add: Multiset.count_def Multiset.countm_empty_def)
lemma count_addm_simp:
"count (addm M x) y = (if y=x then Suc(count M y) else count M y)"
by (simp add: Multiset.count_def Multiset.countm_nonempty_def)
lemma count_leq_addm: "count M y <= count (addm M x) y"
by (simp add: count_addm_simp)
lemma count_delm_simp:
"count (delm M x) y = (if y=x then count M y - 1 else count M y)"
apply (unfold Multiset.count_def)
apply (rule_tac M = "M" in Multiset.induction)
apply (simp (no_asm_simp) add: Multiset.delm_empty_def Multiset.countm_empty_def)
apply (simp add: Multiset.delm_nonempty_def Multiset.countm_nonempty_def)
apply safe
apply simp
done
lemma countm_props: "!!M. (!x. P(x) --> Q(x)) ==> (countm M P <= countm M Q)"
apply (rule_tac M = "M" in Multiset.induction)
apply (simp (no_asm) add: Multiset.countm_empty_def)
apply (simp (no_asm) add: Multiset.countm_nonempty_def)
apply auto
done
lemma countm_spurious_delm: "!!P. ~P(obj) ==> countm M P = countm (delm M obj) P"
apply (rule_tac M = "M" in Multiset.induction)
apply (simp (no_asm) add: Multiset.delm_empty_def Multiset.countm_empty_def)
apply (simp (no_asm_simp) add: Multiset.countm_nonempty_def Multiset.delm_nonempty_def)
done
lemma pos_count_imp_pos_countm [rule_format (no_asm)]: "!!P. P(x) ==> 0<count M x --> 0<countm M P"
apply (rule_tac M = "M" in Multiset.induction)
apply (simp (no_asm) add: Multiset.delm_empty_def Multiset.count_def Multiset.countm_empty_def)
apply (simp (no_asm_simp) add: Multiset.count_def Multiset.delm_nonempty_def Multiset.countm_nonempty_def)
done
lemma countm_done_delm:
"!!P. P(x) ==> 0<count M x --> countm (delm M x) P = countm M P - 1"
apply (rule_tac M = "M" in Multiset.induction)
apply (simp (no_asm) add: Multiset.delm_empty_def Multiset.countm_empty_def)
apply (simp (no_asm_simp) add: count_addm_simp Multiset.delm_nonempty_def Multiset.countm_nonempty_def pos_count_imp_pos_countm)
apply auto
done
declare count_addm_simp [simp] count_delm_simp [simp]
Multiset.countm_empty_def [simp] Multiset.delm_empty_def [simp] count_empty [simp]
end