(* Title: HOL/Statespace/distinct_tree_prover.ML
Author: Norbert Schirmer, TU Muenchen
*)
signature DISTINCT_TREE_PROVER =
sig
datatype direction = Left | Right
val mk_tree : ('a -> term) -> typ -> 'a list -> term
val dest_tree : term -> term list
val find_tree : term -> term -> direction list option
val neq_to_eq_False : thm
val distinctTreeProver : thm -> direction list -> direction list -> thm
val neq_x_y : Proof.context -> term -> term -> string -> thm option
val distinctFieldSolver : string list -> solver
val distinctTree_tac : string list -> Proof.context -> int -> tactic
val distinct_implProver : thm -> cterm -> thm
val subtractProver : term -> cterm -> thm -> thm
val distinct_simproc : string list -> simproc
val discharge : thm list -> thm -> thm
end;
structure DistinctTreeProver : DISTINCT_TREE_PROVER =
struct
val neq_to_eq_False = @{thm neq_to_eq_False};
datatype direction = Left | Right;
fun treeT T = Type (@{type_name tree}, [T]);
fun mk_tree' e T n [] = Const (@{const_name Tip}, treeT T)
| mk_tree' e T n xs =
let
val m = (n - 1) div 2;
val (xsl,x::xsr) = chop m xs;
val l = mk_tree' e T m xsl;
val r = mk_tree' e T (n-(m+1)) xsr;
in
Const (@{const_name Node}, treeT T --> T --> HOLogic.boolT--> treeT T --> treeT T) $
l $ e x $ @{term False} $ r
end
fun mk_tree e T xs = mk_tree' e T (length xs) xs;
fun dest_tree (Const (@{const_name Tip}, _)) = []
| dest_tree (Const (@{const_name Node}, _) $ l $ e $ _ $ r) = dest_tree l @ e :: dest_tree r
| dest_tree t = raise TERM ("dest_tree", [t]);
fun lin_find_tree e (Const (@{const_name Tip}, _)) = NONE
| lin_find_tree e (Const (@{const_name Node}, _) $ l $ x $ _ $ r) =
if e aconv x
then SOME []
else
(case lin_find_tree e l of
SOME path => SOME (Left :: path)
| NONE =>
(case lin_find_tree e r of
SOME path => SOME (Right :: path)
| NONE => NONE))
| lin_find_tree e t = raise TERM ("find_tree: input not a tree", [t])
fun bin_find_tree order e (Const (@{const_name Tip}, _)) = NONE
| bin_find_tree order e (Const (@{const_name Node}, _) $ l $ x $ _ $ r) =
(case order (e, x) of
EQUAL => SOME []
| LESS => Option.map (cons Left) (bin_find_tree order e l)
| GREATER => Option.map (cons Right) (bin_find_tree order e r))
| bin_find_tree order e t = raise TERM ("find_tree: input not a tree", [t])
fun find_tree e t =
(case bin_find_tree Term_Ord.fast_term_ord e t of
NONE => lin_find_tree e t
| x => x);
fun index_tree (Const (@{const_name Tip}, _)) path tab = tab
| index_tree (Const (@{const_name Node}, _) $ l $ x $ _ $ r) path tab =
tab
|> Termtab.update_new (x, path)
|> index_tree l (path @ [Left])
|> index_tree r (path @ [Right])
| index_tree t _ _ = raise TERM ("index_tree: input not a tree", [t])
fun split_common_prefix xs [] = ([], xs, [])
| split_common_prefix [] ys = ([], [], ys)
| split_common_prefix (xs as (x :: xs')) (ys as (y :: ys')) =
if x = y
then let val (ps, xs'', ys'') = split_common_prefix xs' ys' in (x :: ps, xs'', ys'') end
else ([], xs, ys)
(* Wrapper around Thm.instantiate. The type instiations of instTs are applied to
* the right hand sides of insts
*)
fun instantiate instTs insts =
let
val instTs' = map (fn (T, U) => (dest_TVar (typ_of T), typ_of U)) instTs;
fun substT x = (case AList.lookup (op =) instTs' x of NONE => TVar x | SOME T' => T');
fun mapT_and_recertify ct =
let
val thy = theory_of_cterm ct;
in (cterm_of thy (Term.map_types (Term.map_type_tvar substT) (term_of ct))) end;
val insts' = map (apfst mapT_and_recertify) insts;
in Thm.instantiate (instTs, insts') end;
fun tvar_clash ixn S S' = raise TYPE ("Type variable " ^
quote (Term.string_of_vname ixn) ^ " has two distinct sorts",
[TVar (ixn, S), TVar (ixn, S')], []);
fun lookup (tye, (ixn, S)) =
(case AList.lookup (op =) tye ixn of
NONE => NONE
| SOME (S', T) => if S = S' then SOME T else tvar_clash ixn S S');
val naive_typ_match =
let
fun match (TVar (v, S), T) subs =
(case lookup (subs, (v, S)) of
NONE => ((v, (S, T))::subs)
| SOME _ => subs)
| match (Type (a, Ts), Type (b, Us)) subs =
if a <> b then raise Type.TYPE_MATCH
else matches (Ts, Us) subs
| match (TFree x, TFree y) subs =
if x = y then subs else raise Type.TYPE_MATCH
| match _ _ = raise Type.TYPE_MATCH
and matches (T :: Ts, U :: Us) subs = matches (Ts, Us) (match (T, U) subs)
| matches _ subs = subs;
in match end;
(* expects that relevant type variables are already contained in
* term variables. First instantiation of variables is returned without further
* checking.
*)
fun naive_cterm_first_order_match (t, ct) env =
let
val thy = theory_of_cterm ct;
fun mtch (env as (tyinsts, insts)) =
fn (Var (ixn, T), ct) =>
(case AList.lookup (op =) insts ixn of
NONE => (naive_typ_match (T, typ_of (ctyp_of_term ct)) tyinsts, (ixn, ct) :: insts)
| SOME _ => env)
| (f $ t, ct) =>
let val (cf, ct') = Thm.dest_comb ct;
in mtch (mtch env (f, cf)) (t, ct') end
| _ => env;
in mtch env (t, ct) end;
fun discharge prems rule =
let
val thy = theory_of_thm (hd prems);
val (tyinsts,insts) =
fold naive_cterm_first_order_match (prems_of rule ~~ map cprop_of prems) ([], []);
val tyinsts' =
map (fn (v, (S, U)) => (ctyp_of thy (TVar (v, S)), ctyp_of thy U)) tyinsts;
val insts' =
map (fn (idxn, ct) => (cterm_of thy (Var (idxn, typ_of (ctyp_of_term ct))), ct)) insts;
val rule' = Thm.instantiate (tyinsts', insts') rule;
in fold Thm.elim_implies prems rule' end;
local
val (l_in_set_root, x_in_set_root, r_in_set_root) =
let
val (Node_l_x_d, r) =
cprop_of @{thm in_set_root}
|> Thm.dest_comb |> #2
|> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 |> Thm.dest_comb;
val (Node_l, x) = Node_l_x_d |> Thm.dest_comb |> #1 |> Thm.dest_comb;
val l = Node_l |> Thm.dest_comb |> #2;
in (l,x,r) end;
val (x_in_set_left, r_in_set_left) =
let
val (Node_l_x_d, r) =
cprop_of @{thm in_set_left}
|> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2
|> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 |> Thm.dest_comb;
val x = Node_l_x_d |> Thm.dest_comb |> #1 |> Thm.dest_comb |> #2;
in (x, r) end;
val (x_in_set_right, l_in_set_right) =
let
val (Node_l, x) =
cprop_of @{thm in_set_right}
|> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2
|> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2
|> Thm.dest_comb |> #1 |> Thm.dest_comb |> #1
|> Thm.dest_comb;
val l = Node_l |> Thm.dest_comb |> #2;
in (x, l) end;
in
(*
1. First get paths x_path y_path of x and y in the tree.
2. For the common prefix descend into the tree according to the path
and lemmas all_distinct_left/right
3. If one restpath is empty use distinct_left/right,
otherwise all_distinct_left_right
*)
fun distinctTreeProver dist_thm x_path y_path =
let
fun dist_subtree [] thm = thm
| dist_subtree (p :: ps) thm =
let
val rule =
(case p of Left => @{thm all_distinct_left} | Right => @{thm all_distinct_right})
in dist_subtree ps (discharge [thm] rule) end;
val (ps, x_rest, y_rest) = split_common_prefix x_path y_path;
val dist_subtree_thm = dist_subtree ps dist_thm;
val subtree = cprop_of dist_subtree_thm |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2;
val (_, [l, _, _, r]) = Drule.strip_comb subtree;
fun in_set ps tree =
let
val (_, [l, x, _, r]) = Drule.strip_comb tree;
val xT = ctyp_of_term x;
in
(case ps of
[] =>
instantiate
[(ctyp_of_term x_in_set_root, xT)]
[(l_in_set_root, l), (x_in_set_root, x), (r_in_set_root, r)] @{thm in_set_root}
| Left :: ps' =>
let
val in_set_l = in_set ps' l;
val in_set_left' =
instantiate
[(ctyp_of_term x_in_set_left, xT)]
[(x_in_set_left, x), (r_in_set_left, r)] @{thm in_set_left};
in discharge [in_set_l] in_set_left' end
| Right :: ps' =>
let
val in_set_r = in_set ps' r;
val in_set_right' =
instantiate
[(ctyp_of_term x_in_set_right, xT)]
[(x_in_set_right, x), (l_in_set_right, l)] @{thm in_set_right};
in discharge [in_set_r] in_set_right' end)
end;
fun in_set' [] = raise TERM ("distinctTreeProver", [])
| in_set' (Left :: ps) = in_set ps l
| in_set' (Right :: ps) = in_set ps r;
fun distinct_lr node_in_set Left = discharge [dist_subtree_thm, node_in_set] @{thm distinct_left}
| distinct_lr node_in_set Right = discharge [dist_subtree_thm, node_in_set] @{thm distinct_right}
val (swap, neq) =
(case x_rest of
[] =>
let val y_in_set = in_set' y_rest;
in (false, distinct_lr y_in_set (hd y_rest)) end
| xr :: xrs =>
(case y_rest of
[] =>
let val x_in_set = in_set' x_rest;
in (true, distinct_lr x_in_set (hd x_rest)) end
| yr :: yrs =>
let
val x_in_set = in_set' x_rest;
val y_in_set = in_set' y_rest;
in
(case xr of
Left =>
(false, discharge [dist_subtree_thm, x_in_set, y_in_set] @{thm distinct_left_right})
| Right =>
(true, discharge [dist_subtree_thm, y_in_set, x_in_set] @{thm distinct_left_right}))
end));
in if swap then discharge [neq] @{thm swap_neq} else neq end;
fun deleteProver dist_thm [] = @{thm delete_root} OF [dist_thm]
| deleteProver dist_thm (p::ps) =
let
val dist_rule =
(case p of Left => @{thm all_distinct_left} | Right => @{thm all_distinct_right});
val dist_thm' = discharge [dist_thm] dist_rule;
val del_rule = (case p of Left => @{thm delete_left} | Right => @{thm delete_right});
val del = deleteProver dist_thm' ps;
in discharge [dist_thm, del] del_rule end;
local
val (alpha, v) =
let
val ct =
@{thm subtract_Tip} |> Thm.cprop_of |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2
|> Thm.dest_comb |> #2;
val [alpha] = ct |> Thm.ctyp_of_term |> Thm.dest_ctyp;
in (alpha, #1 (dest_Var (term_of ct))) end;
in
fun subtractProver (Const (@{const_name Tip}, T)) ct dist_thm =
let
val ct' = dist_thm |> Thm.cprop_of |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2;
val thy = theory_of_cterm ct;
val [alphaI] = #2 (dest_Type T);
in
Thm.instantiate
([(alpha, ctyp_of thy alphaI)],
[(cterm_of thy (Var (v, treeT alphaI)), ct')]) @{thm subtract_Tip}
end
| subtractProver (Const (@{const_name Node}, nT) $ l $ x $ d $ r) ct dist_thm =
let
val ct' = dist_thm |> Thm.cprop_of |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2;
val (_, [cl, _, _, cr]) = Drule.strip_comb ct;
val ps = the (find_tree x (term_of ct'));
val del_tree = deleteProver dist_thm ps;
val dist_thm' = discharge [del_tree, dist_thm] @{thm delete_Some_all_distinct};
val sub_l = subtractProver (term_of cl) cl (dist_thm');
val sub_r =
subtractProver (term_of cr) cr
(discharge [sub_l, dist_thm'] @{thm subtract_Some_all_distinct_res});
in discharge [del_tree, sub_l, sub_r] @{thm subtract_Node} end;
end;
fun distinct_implProver dist_thm ct =
let
val ctree = ct |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2;
val sub = subtractProver (term_of ctree) ctree dist_thm;
in @{thm subtract_Some_all_distinct} OF [sub, dist_thm] end;
fun get_fst_success f [] = NONE
| get_fst_success f (x :: xs) =
(case f x of
NONE => get_fst_success f xs
| SOME v => SOME v);
fun neq_x_y ctxt x y name =
(let
val dist_thm = the (try (Proof_Context.get_thm ctxt) name);
val ctree = cprop_of dist_thm |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2;
val tree = term_of ctree;
val x_path = the (find_tree x tree);
val y_path = the (find_tree y tree);
val thm = distinctTreeProver dist_thm x_path y_path;
in SOME thm
end handle Option.Option => NONE);
fun distinctTree_tac names ctxt = SUBGOAL (fn (goal, i) =>
(case goal of
Const (@{const_name Trueprop}, _) $
(Const (@{const_name Not}, _) $ (Const (@{const_name HOL.eq}, _) $ x $ y)) =>
(case get_fst_success (neq_x_y ctxt x y) names of
SOME neq => rtac neq i
| NONE => no_tac)
| _ => no_tac))
fun distinctFieldSolver names =
mk_solver "distinctFieldSolver" (distinctTree_tac names o Simplifier.the_context);
fun distinct_simproc names =
Simplifier.simproc_global @{theory HOL} "DistinctTreeProver.distinct_simproc" ["x = y"]
(fn thy => fn ss => fn (Const (@{const_name HOL.eq}, _) $ x $ y) =>
(case try Simplifier.the_context ss of
SOME ctxt =>
Option.map (fn neq => @{thm neq_to_eq_False} OF [neq])
(get_fst_success (neq_x_y ctxt x y) names)
| NONE => NONE));
end;
end;