(*  Title: 	HOLCF/porder0.thy
    ID:         $Id$
    Author: 	Franz Regensburger
    Copyright   1993 Technische Universitaet Muenchen
Definition of class porder (partial order)
The prototype theory for this class is void.thy 
*)
Porder0 = Void +
(* Introduction of new class. The witness is type void. *)
classes po < term
(* default type is still term ! *)
(* void is the prototype in po *)
arities void :: po
consts	"<<"	::	"['a,'a::po] => bool"	(infixl 55)
rules
(* class axioms: justification is theory Void *)
refl_less	"x << x"	
				(* witness refl_less_void    *)
antisym_less	"[|x<<y ; y<<x |] ==> x = y"	
				(* witness antisym_less_void *)
trans_less	"[|x<<y ; y<<z |] ==> x<<z"
				(* witness trans_less_void   *)
(* instance of << for the prototype void *)
inst_void_po	"(op <<)::[void,void]=>bool = less_void"
end