(* Title: FOL/ex/First_Order_Logic.thy
ID: $Id$
Author: Markus Wenzel, TU Munich
*)
header {* A simple formulation of First-Order Logic *}
theory First_Order_Logic imports Pure begin
text {*
The subsequent theory development illustrates single-sorted
intuitionistic first-order logic with equality, formulated within
the Pure framework. Actually this is not an example of
Isabelle/FOL, but of Isabelle/Pure.
*}
subsection {* Syntax *}
typedecl i
typedecl o
judgment
Trueprop :: "o \<Rightarrow> prop" ("_" 5)
subsection {* Propositional logic *}
consts
false :: o ("\<bottom>")
imp :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longrightarrow>" 25)
conj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<and>" 35)
disj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<or>" 30)
axioms
falseE [elim]: "\<bottom> \<Longrightarrow> A"
impI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B"
mp [dest]: "A \<longrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
conjI [intro]: "A \<Longrightarrow> B \<Longrightarrow> A \<and> B"
conjD1: "A \<and> B \<Longrightarrow> A"
conjD2: "A \<and> B \<Longrightarrow> B"
disjE [elim]: "A \<or> B \<Longrightarrow> (A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C"
disjI1 [intro]: "A \<Longrightarrow> A \<or> B"
disjI2 [intro]: "B \<Longrightarrow> A \<or> B"
theorem conjE [elim]: "A \<and> B \<Longrightarrow> (A \<Longrightarrow> B \<Longrightarrow> C) \<Longrightarrow> C"
proof -
assume ab: "A \<and> B"
assume r: "A \<Longrightarrow> B \<Longrightarrow> C"
show C
proof (rule r)
from ab show A by (rule conjD1)
from ab show B by (rule conjD2)
qed
qed
constdefs
true :: o ("\<top>")
"\<top> \<equiv> \<bottom> \<longrightarrow> \<bottom>"
not :: "o \<Rightarrow> o" ("\<not> _" [40] 40)
"\<not> A \<equiv> A \<longrightarrow> \<bottom>"
iff :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longleftrightarrow>" 25)
"A \<longleftrightarrow> B \<equiv> (A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
theorem trueI [intro]: \<top>
proof (unfold true_def)
show "\<bottom> \<longrightarrow> \<bottom>" ..
qed
theorem notI [intro]: "(A \<Longrightarrow> \<bottom>) \<Longrightarrow> \<not> A"
proof (unfold not_def)
assume "A \<Longrightarrow> \<bottom>"
thus "A \<longrightarrow> \<bottom>" ..
qed
theorem notE [elim]: "\<not> A \<Longrightarrow> A \<Longrightarrow> B"
proof (unfold not_def)
assume "A \<longrightarrow> \<bottom>" and A
hence \<bottom> .. thus B ..
qed
theorem iffI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A \<longleftrightarrow> B"
proof (unfold iff_def)
assume "A \<Longrightarrow> B" hence "A \<longrightarrow> B" ..
moreover assume "B \<Longrightarrow> A" hence "B \<longrightarrow> A" ..
ultimately show "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)" ..
qed
theorem iff1 [elim]: "A \<longleftrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
proof (unfold iff_def)
assume "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
hence "A \<longrightarrow> B" ..
thus "A \<Longrightarrow> B" ..
qed
theorem iff2 [elim]: "A \<longleftrightarrow> B \<Longrightarrow> B \<Longrightarrow> A"
proof (unfold iff_def)
assume "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
hence "B \<longrightarrow> A" ..
thus "B \<Longrightarrow> A" ..
qed
subsection {* Equality *}
consts
equal :: "i \<Rightarrow> i \<Rightarrow> o" (infixl "=" 50)
axioms
refl [intro]: "x = x"
subst: "x = y \<Longrightarrow> P(x) \<Longrightarrow> P(y)"
theorem trans [trans]: "x = y \<Longrightarrow> y = z \<Longrightarrow> x = z"
by (rule subst)
theorem sym [sym]: "x = y \<Longrightarrow> y = x"
proof -
assume "x = y"
from this and refl show "y = x" by (rule subst)
qed
subsection {* Quantifiers *}
consts
All :: "(i \<Rightarrow> o) \<Rightarrow> o" (binder "\<forall>" 10)
Ex :: "(i \<Rightarrow> o) \<Rightarrow> o" (binder "\<exists>" 10)
axioms
allI [intro]: "(\<And>x. P(x)) \<Longrightarrow> \<forall>x. P(x)"
allD [dest]: "\<forall>x. P(x) \<Longrightarrow> P(a)"
exI [intro]: "P(a) \<Longrightarrow> \<exists>x. P(x)"
exE [elim]: "\<exists>x. P(x) \<Longrightarrow> (\<And>x. P(x) \<Longrightarrow> C) \<Longrightarrow> C"
lemma "(\<exists>x. P(f(x))) \<longrightarrow> (\<exists>y. P(y))"
proof
assume "\<exists>x. P(f(x))"
thus "\<exists>y. P(y)"
proof
fix x assume "P(f(x))"
thus ?thesis ..
qed
qed
lemma "(\<exists>x. \<forall>y. R(x, y)) \<longrightarrow> (\<forall>y. \<exists>x. R(x, y))"
proof
assume "\<exists>x. \<forall>y. R(x, y)"
thus "\<forall>y. \<exists>x. R(x, y)"
proof
fix x assume a: "\<forall>y. R(x, y)"
show ?thesis
proof
fix y from a have "R(x, y)" ..
thus "\<exists>x. R(x, y)" ..
qed
qed
qed
end