(* Title: HOL/UNITY/PPROD.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
*)
val rinst = read_instantiate_sg (sign_of thy);
(*** General lemmas ***)
Goal "x:C ==> (A Times C <= B Times C) = (A <= B)";
by (Blast_tac 1);
qed "Times_subset_cancel2";
Goal "x:C ==> (A Times C = B Times C) = (A = B)";
by (blast_tac (claset() addEs [equalityE]) 1);
qed "Times_eq_cancel2";
Goal "Union(B) Times A = (UN C:B. C Times A)";
by (Blast_tac 1);
qed "Times_Union2";
Goal "Domain (Union S) = (UN A:S. Domain A)";
by (Blast_tac 1);
qed "Domain_Union";
(** RTimes: the product of two relations **)
Goal "(((a,b), (a',b')) : A RTimes B) = ((a,a'):A & (b,b'):B)";
by (simp_tac (simpset() addsimps [RTimes_def]) 1);
qed "mem_RTimes_iff";
AddIffs [mem_RTimes_iff];
Goalw [RTimes_def] "[| A<=C; B<=D |] ==> A RTimes B <= C RTimes D";
by Auto_tac;
qed "RTimes_mono";
Goal "{} RTimes B = {}";
by Auto_tac;
qed "RTimes_empty1";
Goal "A RTimes {} = {}";
by Auto_tac;
qed "RTimes_empty2";
Goal "Id RTimes Id = Id";
by Auto_tac;
qed "RTimes_Id";
Addsimps [RTimes_empty1, RTimes_empty2, RTimes_Id];
Goal "Domain (r RTimes s) = Domain r Times Domain s";
by (auto_tac (claset(), simpset() addsimps [Domain_iff]));
qed "Domain_RTimes";
Goal "Range (r RTimes s) = Range r Times Range s";
by (auto_tac (claset(), simpset() addsimps [Range_iff]));
qed "Range_RTimes";
Goal "(r RTimes s) ^^ (A Times B) = r^^A Times s^^B";
by (auto_tac (claset(), simpset() addsimps [Image_iff]));
qed "Image_RTimes";
Goal "- (UNIV Times A) = UNIV Times (-A)";
by Auto_tac;
qed "Compl_Times_UNIV1";
Goal "- (A Times UNIV) = (-A) Times UNIV";
by Auto_tac;
qed "Compl_Times_UNIV2";
Addsimps [Compl_Times_UNIV1, Compl_Times_UNIV2];
(**** Lcopy ****)
(*** Basic properties ***)
Goal "Init (Lcopy F) = Init F Times UNIV";
by (simp_tac (simpset() addsimps [Lcopy_def]) 1);
qed "Init_Lcopy";
Goal "Id : (%act. act RTimes Id) `` Acts F";
by (rtac image_eqI 1);
by (rtac Id_in_Acts 2);
by Auto_tac;
val lemma = result();
Goal "Acts (Lcopy F) = (%act. act RTimes Id) `` Acts F";
by (auto_tac (claset() addSIs [lemma],
simpset() addsimps [Lcopy_def]));
qed "Acts_Lcopy";
Addsimps [Init_Lcopy];
Goalw [Lcopy_def, SKIP_def] "Lcopy SKIP = SKIP";
by (rtac program_equalityI 1);
by Auto_tac;
qed "Lcopy_SKIP";
Addsimps [Lcopy_SKIP];
(*** Safety: constrains, stable ***)
(** In most cases, C = UNIV. The generalization isn't of obvious value. **)
Goal "x: C ==> \
\ (Lcopy F : constrains (A Times C) (B Times C)) = (F : constrains A B)";
by (auto_tac (claset(), simpset() addsimps [constrains_def, Lcopy_def]));
by (Blast_tac 1);
qed "Lcopy_constrains";
Goal "Lcopy F : constrains A B ==> F : constrains (Domain A) (Domain B)";
by (auto_tac (claset(), simpset() addsimps [constrains_def, Lcopy_def]));
by (Blast_tac 1);
qed "Lcopy_constrains_Domain";
Goal "x: C ==> (Lcopy F : stable (A Times C)) = (F : stable A)";
by (asm_simp_tac (simpset() addsimps [stable_def, Lcopy_constrains]) 1);
qed "Lcopy_stable";
Goal "(Lcopy F : invariant (A Times UNIV)) = (F : invariant A)";
by (asm_simp_tac (simpset() addsimps [Times_subset_cancel2,
invariant_def, Lcopy_stable]) 1);
qed "Lcopy_invariant";
(** Substitution Axiom versions: Constrains, Stable **)
Goal "p : reachable (Lcopy F) ==> fst p : reachable F";
by (etac reachable.induct 1);
by (auto_tac
(claset() addIs reachable.intrs,
simpset() addsimps [Acts_Lcopy]));
qed "reachable_Lcopy_fst";
Goal "(a,b) : reachable (Lcopy F) ==> a : reachable F";
by (force_tac (claset() addSDs [reachable_Lcopy_fst], simpset()) 1);
qed "reachable_LcopyD";
Goal "reachable (Lcopy F) = reachable F Times UNIV";
by (rtac equalityI 1);
by (force_tac (claset() addSDs [reachable_LcopyD], simpset()) 1);
by (Clarify_tac 1);
by (etac reachable.induct 1);
by (ALLGOALS (force_tac (claset() addIs reachable.intrs,
simpset() addsimps [Acts_Lcopy])));
qed "reachable_Lcopy_eq";
Goal "(Lcopy F : Constrains (A Times UNIV) (B Times UNIV)) = \
\ (F : Constrains A B)";
by (simp_tac
(simpset() addsimps [Constrains_def, reachable_Lcopy_eq,
Lcopy_constrains, Sigma_Int_distrib1 RS sym]) 1);
qed "Lcopy_Constrains";
Goal "(Lcopy F : Stable (A Times UNIV)) = (F : Stable A)";
by (simp_tac (simpset() addsimps [Stable_def, Lcopy_Constrains]) 1);
qed "Lcopy_Stable";
(*** Progress: transient, ensures ***)
Goal "(Lcopy F : transient (A Times UNIV)) = (F : transient A)";
by (auto_tac (claset(),
simpset() addsimps [transient_def, Times_subset_cancel2,
Domain_RTimes, Image_RTimes, Lcopy_def]));
qed "Lcopy_transient";
Goal "(Lcopy F : ensures (A Times UNIV) (B Times UNIV)) = \
\ (F : ensures A B)";
by (simp_tac
(simpset() addsimps [ensures_def, Lcopy_constrains, Lcopy_transient,
Sigma_Un_distrib1 RS sym,
Sigma_Diff_distrib1 RS sym]) 1);
qed "Lcopy_ensures";
Goal "F : leadsTo A B ==> Lcopy F : leadsTo (A Times UNIV) (B Times UNIV)";
by (etac leadsTo_induct 1);
by (asm_simp_tac (simpset() addsimps [leadsTo_UN, Times_Union2]) 3);
by (blast_tac (claset() addIs [leadsTo_Trans]) 2);
by (asm_simp_tac (simpset() addsimps [leadsTo_Basis, Lcopy_ensures]) 1);
qed "leadsTo_imp_Lcopy_leadsTo";
Goal "Lcopy F : ensures A B ==> F : ensures (Domain A) (Domain B)";
by (full_simp_tac
(simpset() addsimps [ensures_def, Lcopy_constrains, Lcopy_transient,
Domain_Un_eq RS sym,
Sigma_Un_distrib1 RS sym,
Sigma_Diff_distrib1 RS sym]) 1);
by (safe_tac (claset() addSDs [Lcopy_constrains_Domain]));
by (etac constrains_weaken_L 1);
by (Blast_tac 1);
(*NOT able to prove this:
Lcopy F : ensures A B ==> F : ensures (Domain A) (Domain B)
1. [| Lcopy F : transient (A - B);
F : constrains (Domain (A - B)) (Domain (A Un B)) |]
==> F : transient (Domain A - Domain B)
**)
Goal "Lcopy F : leadsTo AU BU ==> F : leadsTo (Domain AU) (Domain BU)";
by (etac leadsTo_induct 1);
by (full_simp_tac (simpset() addsimps [Domain_Union]) 3);
by (blast_tac (claset() addIs [leadsTo_UN]) 3);
by (blast_tac (claset() addIs [leadsTo_Trans]) 2);
by (rtac leadsTo_Basis 1);
(*...and so CANNOT PROVE THIS*)
(*This also seems impossible to prove??*)
Goal "(Lcopy F : leadsTo (A Times UNIV) (B Times UNIV)) = \
\ (F : leadsTo A B)";
(**** PPROD ****)
(*** Basic properties ***)
Goalw [PPROD_def, lift_prog_def]
"Init (PPROD I F) = {f. ALL i:I. f i : Init F}";
by Auto_tac;
qed "Init_PPROD";
Goalw [lift_act_def] "lift_act i Id = Id";
by Auto_tac;
qed "lift_act_Id";
Addsimps [lift_act_Id];
Goalw [lift_act_def]
"((f,f') : lift_act i act) = (EX s'. f' = f(i := s') & (f i, s') : act)";
by (Blast_tac 1);
qed "lift_act_eq";
AddIffs [lift_act_eq];
Goal "Acts (PPROD I F) = insert Id (UN i:I. lift_act i `` Acts F)";
by (auto_tac (claset(),
simpset() addsimps [PPROD_def, lift_prog_def, Acts_JN]));
qed "Acts_PPROD";
Addsimps [Init_PPROD];
Goal "PPROD I SKIP = SKIP";
by (rtac program_equalityI 1);
by (auto_tac (claset(),
simpset() addsimps [PPROD_def, lift_prog_def,
SKIP_def, Acts_JN]));
qed "PPROD_SKIP";
Goal "PPROD {} F = SKIP";
by (simp_tac (simpset() addsimps [PPROD_def]) 1);
qed "PPROD_empty";
Addsimps [PPROD_SKIP, PPROD_empty];
Goalw [PPROD_def] "PPROD (insert i I) F = (lift_prog i F) Join (PPROD I F)";
by Auto_tac;
qed "PPROD_insert";
(*** Safety: constrains, stable ***)
val subsetCE' = rinst
[("c", "(%u. ?s)(i:=?s')")] subsetCE;
Goal "i : I ==> \
\ (PPROD I F : constrains {f. f i : A} {f. f i : B}) = \
\ (F : constrains A B)";
by (auto_tac (claset(),
simpset() addsimps [constrains_def, lift_prog_def, PPROD_def,
Acts_JN]));
by (REPEAT (Blast_tac 2));
by (force_tac (claset() addSEs [subsetCE', allE, ballE], simpset()) 1);
qed "PPROD_constrains";
Goal "[| PPROD I F : constrains AA BB; i: I |] \
\ ==> F : constrains (Applyall AA i) (Applyall BB i)";
by (auto_tac (claset(),
simpset() addsimps [Applyall_def, constrains_def,
lift_prog_def, PPROD_def, Acts_JN]));
by (force_tac (claset() addSIs [rinst [("x", "?ff(i := ?u)")] image_eqI]
addSEs [rinst [("c", "?ff(i := ?u)")] subsetCE, ballE],
simpset()) 1);
qed "PPROD_constrains_projection";
Goal "i : I ==> (PPROD I F : stable {f. f i : A}) = (F : stable A)";
by (asm_simp_tac (simpset() addsimps [stable_def, PPROD_constrains]) 1);
qed "PPROD_stable";
Goal "i : I ==> (PPROD I F : invariant {f. f i : A}) = (F : invariant A)";
by (auto_tac (claset(),
simpset() addsimps [invariant_def, PPROD_stable]));
qed "PPROD_invariant";
(** Substitution Axiom versions: Constrains, Stable **)
Goal "[| f : reachable (PPROD I F); i : I |] ==> f i : reachable F";
by (etac reachable.induct 1);
by (auto_tac
(claset() addIs reachable.intrs,
simpset() addsimps [Acts_PPROD]));
qed "reachable_PPROD";
Goal "reachable (PPROD I F) <= {f. ALL i:I. f i : reachable F}";
by (force_tac (claset() addSDs [reachable_PPROD], simpset()) 1);
qed "reachable_PPROD_subset1";
Goal "[| i ~: I; A : reachable F |] \
\ ==> ALL f. f : reachable (PPROD I F) \
\ --> f(i:=A) : reachable (lift_prog i F Join PPROD I F)";
by (etac reachable.induct 1);
by (ALLGOALS Clarify_tac);
by (etac reachable.induct 1);
(*Init, Init case*)
by (force_tac (claset() addIs reachable.intrs,
simpset() addsimps [lift_prog_def]) 1);
(*Init of F, action of PPROD F case*)
br reachable.Acts 1;
by (force_tac (claset(), simpset() addsimps [Acts_Join]) 1);
ba 1;
by (force_tac (claset() addIs [ext], simpset() addsimps [Acts_PPROD]) 1);
(*induction over the 2nd "reachable" assumption*)
by (eres_inst_tac [("xa","f")] reachable.induct 1);
(*Init of PPROD F, action of F case*)
by (res_inst_tac [("act","lift_act i act")] reachable.Acts 1);
by (force_tac (claset(), simpset() addsimps [lift_prog_def, Acts_Join]) 1);
by (force_tac (claset() addIs [reachable.Init], simpset()) 1);
by (force_tac (claset() addIs [ext], simpset() addsimps [lift_act_def]) 1);
(*last case: an action of PPROD I F*)
br reachable.Acts 1;
by (force_tac (claset(), simpset() addsimps [Acts_Join]) 1);
ba 1;
by (force_tac (claset() addIs [ext], simpset() addsimps [Acts_PPROD]) 1);
qed_spec_mp "reachable_lift_Join_PPROD";
(*The index set must be finite: otherwise infinitely many copies of F can
perform actions, and PPROD can never catch up in finite time.*)
Goal "finite I ==> {f. ALL i:I. f i : reachable F} <= reachable (PPROD I F)";
by (etac finite_induct 1);
by (Simp_tac 1);
by (force_tac (claset() addDs [reachable_lift_Join_PPROD],
simpset() addsimps [PPROD_insert]) 1);
qed "reachable_PPROD_subset2";
Goal "finite I ==> reachable (PPROD I F) = {f. ALL i:I. f i : reachable F}";
by (REPEAT_FIRST (ares_tac [equalityI,
reachable_PPROD_subset1,
reachable_PPROD_subset2]));
qed "reachable_PPROD_eq";
Goal "i: I ==> Applyall {f. (ALL i:I. f i : R) & f i : A} i = R Int A";
by (force_tac (claset(), simpset() addsimps [Applyall_def]) 1);
qed "Applyall_Int";
Goal "[| i: I; finite I |] \
\ ==> (PPROD I F : Constrains {f. f i : A} {f. f i : B}) = \
\ (F : Constrains A B)";
by (auto_tac
(claset(),
simpset() addsimps [Constrains_def, Collect_conj_eq RS sym,
reachable_PPROD_eq]));
bd PPROD_constrains_projection 1;
ba 1;
by (asm_full_simp_tac (simpset() addsimps [Applyall_Int]) 1);
by (auto_tac (claset(),
simpset() addsimps [constrains_def, lift_prog_def, PPROD_def,
Acts_JN]));
by (REPEAT (blast_tac (claset() addIs reachable.intrs) 1));
qed "PPROD_Constrains";
Goal "[| i: I; finite I |] \
\ ==> (PPROD I F : Stable {f. f i : A}) = (F : Stable A)";
by (asm_simp_tac (simpset() addsimps [Stable_def, PPROD_Constrains]) 1);
qed "PPROD_Stable";