src/HOL/MicroJava/BV/JVM.thy
author kleing
Tue, 26 Feb 2002 15:45:32 +0100
changeset 12951 a9fdcb71d252
parent 12911 704713ca07ea
child 13006 51c5f3f11d16
permissions -rw-r--r--
introduces SystemClasses and BVExample

(*  Title:      HOL/MicroJava/BV/JVM.thy
    ID:         $Id$
    Author:     Tobias Nipkow, Gerwin Klein
    Copyright   2000 TUM
*)

header {* \isaheader{Kildall for the JVM}\label{sec:JVM} *}

theory JVM = Kildall_Lift + JVMType + Opt + Product + Typing_Framework_err +
             EffectMono + BVSpec:

constdefs
  exec :: "jvm_prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> instr list \<Rightarrow> state step_type"
  "exec G maxs rT et bs == 
  err_step (\<lambda>pc. app (bs!pc) G maxs rT pc et) (\<lambda>pc. eff (bs!pc) G pc et)"

  kiljvm :: "jvm_prog => nat => nat => ty => exception_table => 
             instr list => state list => state list"
  "kiljvm G maxs maxr rT et bs ==
  kildall (JVMType.le G maxs maxr) (JVMType.sup G maxs maxr) (exec G maxs rT et bs)"

  wt_kil :: "jvm_prog \<Rightarrow> cname \<Rightarrow> ty list \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 
             exception_table \<Rightarrow> instr list \<Rightarrow> bool"
  "wt_kil G C pTs rT mxs mxl et ins ==
   bounded (exec G mxs rT et ins) (size ins) \<and> 0 < size ins \<and> 
   (let first  = Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err));
        start  = OK first#(replicate (size ins - 1) (OK None));
        result = kiljvm G mxs (1+size pTs+mxl) rT et ins start
    in \<forall>n < size ins. result!n \<noteq> Err)"

  wt_jvm_prog_kildall :: "jvm_prog => bool"
  "wt_jvm_prog_kildall G ==
  wf_prog (\<lambda>G C (sig,rT,(maxs,maxl,b,et)). wt_kil G C (snd sig) rT maxs maxl et b) G"


lemma special_ex_swap_lemma [iff]: 
  "(? X. (? n. X = A n & P n) & Q X) = (? n. Q(A n) & P n)"
  by blast

lemmas [iff del] = not_None_eq

lemma non_empty_succs: "succs i pc \<noteq> []"
  by (cases i) auto

lemma non_empty:
  "non_empty (\<lambda>pc. eff (bs!pc) G pc et)" 
  by (simp add: non_empty_def eff_def non_empty_succs)

lemma listn_Cons_Suc [elim!]:
  "l#xs \<in> list n A \<Longrightarrow> (\<And>n'. n = Suc n' \<Longrightarrow> l \<in> A \<Longrightarrow> xs \<in> list n' A \<Longrightarrow> P) \<Longrightarrow> P"
  by (cases n) auto

lemma listn_appendE [elim!]:
  "a@b \<in> list n A \<Longrightarrow> (\<And>n1 n2. n=n1+n2 \<Longrightarrow> a \<in> list n1 A \<Longrightarrow> b \<in> list n2 A \<Longrightarrow> P) \<Longrightarrow> P" 
proof -
  have "\<And>n. a@b \<in> list n A \<Longrightarrow> \<exists>n1 n2. n=n1+n2 \<and> a \<in> list n1 A \<and> b \<in> list n2 A"
    (is "\<And>n. ?list a n \<Longrightarrow> \<exists>n1 n2. ?P a n n1 n2")
  proof (induct a)
    fix n assume "?list [] n"
    hence "?P [] n 0 n" by simp
    thus "\<exists>n1 n2. ?P [] n n1 n2" by fast
  next
    fix n l ls
    assume "?list (l#ls) n"
    then obtain n' where n: "n = Suc n'" "l \<in> A" and "ls@b \<in> list n' A" by fastsimp
    assume "\<And>n. ls @ b \<in> list n A \<Longrightarrow> \<exists>n1 n2. n = n1 + n2 \<and> ls \<in> list n1 A \<and> b \<in> list n2 A"
    hence "\<exists>n1 n2. n' = n1 + n2 \<and> ls \<in> list n1 A \<and> b \<in> list n2 A" .
    then obtain n1 n2 where "n' = n1 + n2" "ls \<in> list n1 A" "b \<in> list n2 A" by fast
    with n have "?P (l#ls) n (n1+1) n2" by simp
    thus "\<exists>n1 n2. ?P (l#ls) n n1 n2" by fastsimp
  qed
  moreover
  assume "a@b \<in> list n A" "\<And>n1 n2. n=n1+n2 \<Longrightarrow> a \<in> list n1 A \<Longrightarrow> b \<in> list n2 A \<Longrightarrow> P"
  ultimately
  show ?thesis by blast
qed


theorem exec_pres_type:
  "wf_prog wf_mb S ==> 
  pres_type (exec S maxs rT et bs) (size bs) (states S maxs maxr)"
  apply (unfold exec_def JVM_states_unfold)
  apply (rule pres_type_lift)
  apply clarify
  apply (case_tac s)
   apply simp
   apply (drule effNone)
   apply simp  
  apply (simp add: eff_def xcpt_eff_def norm_eff_def)
  apply (case_tac "bs!p")

  apply (clarsimp simp add: not_Err_eq)
  apply (drule listE_nth_in, assumption)
  apply fastsimp

  apply (fastsimp simp add: not_None_eq)

  apply (fastsimp simp add: not_None_eq typeof_empty_is_type)

  apply clarsimp
  apply (erule disjE)
   apply fastsimp
  apply clarsimp
  apply (rule_tac x="1" in exI)
  apply fastsimp

  apply clarsimp
  apply (erule disjE)
   apply (fastsimp dest: field_fields fields_is_type)
  apply (simp add: match_some_entry split: split_if_asm)
  apply (rule_tac x=1 in exI)
  apply fastsimp

  apply clarsimp
  apply (erule disjE)
   apply fastsimp
  apply (simp add: match_some_entry split: split_if_asm)
  apply (rule_tac x=1 in exI)
  apply fastsimp

  apply clarsimp
  apply (erule disjE)
   apply fastsimp
  apply clarsimp
  apply (rule_tac x=1 in exI)
  apply fastsimp

  defer 

  apply fastsimp
  apply fastsimp

  apply clarsimp
  apply (rule_tac x="n'+2" in exI)  
  apply simp
  apply (drule listE_length)+
  apply fastsimp

  apply clarsimp
  apply (rule_tac x="Suc (Suc (Suc (length ST)))" in exI)  
  apply simp
  apply (drule listE_length)+
  apply fastsimp

  apply clarsimp
  apply (rule_tac x="Suc (Suc (Suc (Suc (length ST))))" in exI)  
  apply simp
  apply (drule listE_length)+
  apply fastsimp

  apply fastsimp
  apply fastsimp
  apply fastsimp
  apply fastsimp

  apply clarsimp
  apply (erule disjE)
   apply fastsimp
  apply clarsimp
  apply (rule_tac x=1 in exI)
  apply fastsimp
  
  apply (erule disjE)
   apply (clarsimp simp add: Un_subset_iff)  
   apply (drule method_wf_mdecl, assumption+)
   apply (clarsimp simp add: wf_mdecl_def wf_mhead_def)
   apply fastsimp
  apply clarsimp
  apply (rule_tac x=1 in exI)
  apply fastsimp
  done

lemmas [iff] = not_None_eq

lemma map_fst_eq:
  "map fst (map (\<lambda>z. (f z, x z)) a) = map fst (map (\<lambda>z. (f z, y z)) a)"
  by (induct a) auto

lemma succs_stable_eff:
  "succs_stable (sup_state_opt G) (\<lambda>pc. eff (bs!pc) G pc et)"
  apply (unfold succs_stable_def eff_def xcpt_eff_def)
  apply (simp add: map_fst_eq)
  done

lemma sup_state_opt_unfold:
  "sup_state_opt G \<equiv> Opt.le (Product.le (Listn.le (subtype G)) (Listn.le (Err.le (subtype G))))"
  by (simp add: sup_state_opt_def sup_state_def sup_loc_def sup_ty_opt_def)

constdefs
  opt_states :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> (ty list \<times> ty err list) option set"
  "opt_states G maxs maxr \<equiv> opt (\<Union>{list n (types G) |n. n \<le> maxs} \<times> list maxr (err (types G)))"

lemma app_mono:
  "app_mono (sup_state_opt G) (\<lambda>pc. app (bs!pc) G maxs rT pc et) (length bs) (opt_states G maxs maxr)"
  by (unfold app_mono_def lesub_def) (blast intro: EffectMono.app_mono)

lemma le_list_appendI:
  "\<And>b c d. a <=[r] b \<Longrightarrow> c <=[r] d \<Longrightarrow> a@c <=[r] b@d"
apply (induct a)
 apply simp
apply (case_tac b)
apply auto
done

lemma le_listI:
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> a!n <=_r b!n) \<Longrightarrow> a <=[r] b"
  apply (unfold lesub_def Listn.le_def)
  apply (simp add: list_all2_conv_all_nth)
  done
  
lemma eff_mono:
  "\<lbrakk>p < length bs; s <=_(sup_state_opt G) t; app (bs!p) G maxs rT pc et t\<rbrakk>
  \<Longrightarrow> eff (bs!p) G p et s <=|sup_state_opt G| eff (bs!p) G p et t"
  apply (unfold eff_def)
  apply (rule le_list_appendI)
   apply (simp add: norm_eff_def)
   apply (rule le_listI)
    apply simp
   apply simp
   apply (simp add: lesub_def)
   apply (case_tac s)
    apply simp
   apply (simp del: split_paired_All split_paired_Ex)
   apply (elim exE conjE)
   apply simp
   apply (drule eff'_mono, assumption)
   apply assumption
  apply (simp add: xcpt_eff_def)
  apply (rule le_listI)
    apply simp
  apply simp
  apply (simp add: lesub_def)
  apply (case_tac s)
   apply simp
  apply simp
  apply (case_tac t)
   apply simp
  apply (clarsimp simp add: sup_state_conv)
  done

lemma order_sup_state_opt:
  "wf_prog wf_mb G \<Longrightarrow> order (sup_state_opt G)"
  by (unfold sup_state_opt_unfold) (blast dest: acyclic_subcls1 order_widen)

theorem exec_mono:
  "wf_prog wf_mb G ==>
  mono (JVMType.le G maxs maxr) (exec G maxs rT et bs) (size bs) (states G maxs maxr)"  
  apply (unfold exec_def JVM_le_unfold JVM_states_unfold)  
  apply (rule mono_lift)
     apply (fold sup_state_opt_unfold opt_states_def)
     apply (erule order_sup_state_opt)
    apply (rule succs_stable_eff)
   apply (rule app_mono)
  apply clarify
  apply (rule eff_mono)
  apply assumption+
  done

theorem semilat_JVM_slI:
  "wf_prog wf_mb G ==> semilat (JVMType.sl G maxs maxr)"
  apply (unfold JVMType.sl_def stk_esl_def reg_sl_def)
  apply (rule semilat_opt)
  apply (rule err_semilat_Product_esl)
  apply (rule err_semilat_upto_esl)
  apply (rule err_semilat_JType_esl, assumption+)
  apply (rule err_semilat_eslI)
  apply (rule semilat_Listn_sl)
  apply (rule err_semilat_JType_esl, assumption+)  
  done

lemma sl_triple_conv:
  "JVMType.sl G maxs maxr == 
  (states G maxs maxr, JVMType.le G maxs maxr, JVMType.sup G maxs maxr)"
  by (simp (no_asm) add: states_def JVMType.le_def JVMType.sup_def)


theorem is_bcv_kiljvm:
  "[| wf_prog wf_mb G; bounded (exec G maxs rT et bs) (size bs) |] ==> 
      is_bcv (JVMType.le G maxs maxr) Err (exec G maxs rT et bs)
             (size bs) (states G maxs maxr) (kiljvm G maxs maxr rT et bs)"
  apply (unfold kiljvm_def sl_triple_conv)
  apply (rule is_bcv_kildall)
       apply (simp (no_asm) add: sl_triple_conv [symmetric]) 
       apply (force intro!: semilat_JVM_slI dest: wf_acyclic simp add: symmetric sl_triple_conv)
      apply (simp (no_asm) add: JVM_le_unfold)
      apply (blast intro!: order_widen wf_converse_subcls1_impl_acc_subtype
                   dest: wf_subcls1 wf_acyclic) 
     apply (simp add: JVM_le_unfold)
    apply (erule exec_pres_type)
    apply assumption
  apply (erule exec_mono)
  done


theorem wt_kil_correct:
  "[| wt_kil G C pTs rT maxs mxl et bs; wf_prog wf_mb G; 
      is_class G C; \<forall>x \<in> set pTs. is_type G x |]
  ==> \<exists>phi. wt_method G C pTs rT maxs mxl bs et phi"
proof -
  let ?start = "OK (Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err)))
                #(replicate (size bs - 1) (OK None))"

  assume wf:      "wf_prog wf_mb G"
  assume isclass: "is_class G C"
  assume istype:  "\<forall>x \<in> set pTs. is_type G x"

  assume "wt_kil G C pTs rT maxs mxl et bs"
  then obtain maxr r where    
    bounded: "bounded (exec G maxs rT et bs) (size bs)" and
    result:  "r = kiljvm G maxs maxr rT et bs ?start" and
    success: "\<forall>n < size bs. r!n \<noteq> Err" and
    instrs:  "0 < size bs" and
    maxr:    "maxr = Suc (length pTs + mxl)" 
    by (unfold wt_kil_def) simp

  from wf bounded
  have bcv:
    "is_bcv (JVMType.le G maxs maxr) Err (exec G maxs rT et bs) 
            (size bs) (states G maxs maxr) (kiljvm G maxs maxr rT et bs)"
    by (rule is_bcv_kiljvm)

  { fix l x have "set (replicate l x) \<subseteq> {x}" by (cases "0 < l") simp+
  } note subset_replicate = this
  from istype have "set pTs \<subseteq> types G" by auto
  hence "OK ` set pTs \<subseteq> err (types G)" by auto
  with instrs maxr isclass 
  have "?start \<in> list (length bs) (states G maxs maxr)"
    apply (unfold list_def JVM_states_unfold)
    apply simp
    apply (rule conjI)
     apply (simp add: Un_subset_iff)
     apply (rule_tac B = "{Err}" in subset_trans)
      apply (simp add: subset_replicate)
     apply simp
    apply (rule_tac B = "{OK None}" in subset_trans)
     apply (simp add: subset_replicate)
    apply simp
    done
  with bcv success result have 
    "\<exists>ts\<in>list (length bs) (states G maxs maxr).
         ?start <=[JVMType.le G maxs maxr] ts \<and>
         wt_step (JVMType.le G maxs maxr) Err (exec G maxs rT et bs) ts"
    by (unfold is_bcv_def) auto
  then obtain phi' where
    l: "phi' \<in> list (length bs) (states G maxs maxr)" and
    s: "?start <=[JVMType.le G maxs maxr] phi'" and
    w: "wt_step (JVMType.le G maxs maxr) Err (exec G maxs rT et bs) phi'"
    by blast
  hence dynamic:
    "dynamic_wt (sup_state_opt G) (exec G maxs rT et bs) phi'"
    by (simp add: dynamic_wt_def exec_def JVM_le_Err_conv)

  from s have le: "JVMType.le G maxs maxr (?start ! 0) (phi'!0)"
    by (drule_tac p=0 in le_listD) (simp add: lesub_def)+

  from l have l: "size phi' = size bs" by simp  
  with instrs w have "phi' ! 0 \<noteq> Err" by (unfold wt_step_def) simp
  with instrs l have phi0: "OK (map ok_val phi' ! 0) = phi' ! 0"
    by (clarsimp simp add: not_Err_eq)

  from l bounded 
  have bounded': "bounded (\<lambda>pc. eff (bs!pc) G pc et) (length phi')"
    by (simp add: exec_def bounded_lift)  
  with dynamic
  have "static_wt (sup_state_opt G) (\<lambda>pc. app (bs!pc) G maxs rT pc et) 
                  (\<lambda>pc. eff (bs!pc) G pc et) (map ok_val phi')"
    by (auto intro: dynamic_imp_static simp add: exec_def non_empty)
  with instrs l le bounded'
  have "wt_method G C pTs rT maxs mxl bs et (map ok_val phi')"
    apply (unfold wt_method_def static_wt_def)
    apply simp
    apply (rule conjI)
     apply (unfold wt_start_def)
     apply (rule JVM_le_convert [THEN iffD1])
     apply (simp (no_asm) add: phi0)
    apply clarify
    apply (erule allE, erule impE, assumption)
    apply (elim conjE)
    apply (clarsimp simp add: lesub_def wt_instr_def)
    apply (unfold bounded_def)
    apply blast    
    done

  thus ?thesis by blast
qed


theorem wt_kil_complete:
  "[| wt_method G C pTs rT maxs mxl bs et phi; wf_prog wf_mb G; 
      length phi = length bs; is_class G C; \<forall>x \<in> set pTs. is_type G x;
      map OK phi \<in> list (length bs) (states G maxs (1+size pTs+mxl)) |]
  ==> wt_kil G C pTs rT maxs mxl et bs"
proof -
  assume wf: "wf_prog wf_mb G"  
  assume isclass: "is_class G C"
  assume istype: "\<forall>x \<in> set pTs. is_type G x"
  assume length: "length phi = length bs"
  assume istype_phi: "map OK phi \<in> list (length bs) (states G maxs (1+size pTs+mxl))"

  assume "wt_method G C pTs rT maxs mxl bs et phi"
  then obtain
    instrs:   "0 < length bs" and
    wt_start: "wt_start G C pTs mxl phi" and
    wt_ins:   "\<forall>pc. pc < length bs \<longrightarrow> 
                    wt_instr (bs ! pc) G rT phi maxs (length bs) et pc"
    by (unfold wt_method_def) simp

  let ?eff  = "\<lambda>pc. eff (bs!pc) G pc et"
  let ?app   = "\<lambda>pc. app (bs!pc) G maxs rT pc et"

  have bounded_eff: "bounded ?eff (size bs)"
  proof (unfold bounded_def, clarify)
    fix pc pc' s s' assume "pc < length bs"
    with wt_ins have "wt_instr (bs!pc) G rT phi maxs (length bs) et pc" by fast
    then obtain "\<forall>(pc',s') \<in> set (?eff pc (phi!pc)). pc' < length bs"
      by (unfold wt_instr_def) fast
    hence "\<forall>pc' \<in> set (map fst (?eff pc (phi!pc))). pc' < length bs" by auto
    also 
    note succs_stable_eff 
    hence "map fst (?eff pc (phi!pc)) = map fst (?eff pc s)" 
      by (rule succs_stableD)
    finally have "\<forall>(pc',s') \<in> set (?eff pc s). pc' < length bs" by auto
    moreover assume "(pc',s') \<in> set (?eff pc s)"
    ultimately show "pc' < length bs" by blast
  qed
  hence bounded_exec: "bounded (exec G maxs rT et bs) (size bs)" 
    by (simp add: exec_def bounded_lift)
 
  from wt_ins
  have "static_wt (sup_state_opt G) ?app ?eff phi"
    apply (unfold static_wt_def wt_instr_def lesub_def)
    apply (simp (no_asm) only: length)
    apply blast
    done

  with bounded_eff
  have "dynamic_wt (sup_state_opt G) (err_step ?app ?eff) (map OK phi)"
    by - (erule static_imp_dynamic, simp add: length)
  hence dynamic:
    "dynamic_wt (sup_state_opt G) (exec G maxs rT et bs) (map OK phi)"
    by (unfold exec_def)
 
  let ?maxr = "1+size pTs+mxl"
  from wf bounded_exec
  have is_bcv: 
    "is_bcv (JVMType.le G maxs ?maxr) Err (exec G maxs rT et bs) 
            (size bs) (states G maxs ?maxr) (kiljvm G maxs ?maxr rT et bs)"
    by (rule is_bcv_kiljvm)

  let ?start = "OK (Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err)))
                #(replicate (size bs - 1) (OK None))"

  { fix l x have "set (replicate l x) \<subseteq> {x}" by (cases "0 < l") simp+
  } note subset_replicate = this

  from istype have "set pTs \<subseteq> types G" by auto
  hence "OK ` set pTs \<subseteq> err (types G)" by auto
  with instrs isclass have start:
    "?start \<in> list (length bs) (states G maxs ?maxr)"
    apply (unfold list_def JVM_states_unfold)
    apply simp
    apply (rule conjI)
     apply (simp add: Un_subset_iff)
     apply (rule_tac B = "{Err}" in subset_trans)
      apply (simp add: subset_replicate)
     apply simp
    apply (rule_tac B = "{OK None}" in subset_trans)
     apply (simp add: subset_replicate)
    apply simp
    done

  let ?phi = "map OK phi"  
  have less_phi: "?start <=[JVMType.le G maxs ?maxr] ?phi"
  proof -
    from length instrs
    have "length ?start = length (map OK phi)" by simp
    moreover
    { fix n
      from wt_start
      have "G \<turnstile> ok_val (?start!0) <=' phi!0"
        by (simp add: wt_start_def)
      moreover
      from instrs length
      have "0 < length phi" by simp
      ultimately
      have "JVMType.le G maxs ?maxr (?start!0) (?phi!0)"
        by (simp add: JVM_le_Err_conv Err.le_def lesub_def)
      moreover
      { fix n'
        have "JVMType.le G maxs ?maxr (OK None) (?phi!n)"
          by (auto simp add: JVM_le_Err_conv Err.le_def lesub_def 
            split: err.splits)        
        hence "[| n = Suc n'; n < length ?start |] 
          ==> JVMType.le G maxs ?maxr (?start!n) (?phi!n)"
          by simp
      }
      ultimately
      have "n < length ?start ==> (?start!n) <=_(JVMType.le G maxs ?maxr) (?phi!n)"
        by (unfold lesub_def) (cases n, blast+)
    } 
    ultimately show ?thesis by (rule le_listI)
  qed         

  from dynamic
  have "wt_step (JVMType.le G maxs ?maxr) Err (exec G maxs rT et bs) ?phi"
    by (simp add: dynamic_wt_def JVM_le_Err_conv)  
  with start istype_phi less_phi is_bcv
  have "\<forall>p. p < length bs \<longrightarrow> kiljvm G maxs ?maxr rT et bs ?start ! p \<noteq> Err"
    by (unfold is_bcv_def) auto
  with bounded_exec instrs
  show "wt_kil G C pTs rT maxs mxl et bs" by (unfold wt_kil_def) simp
qed
text {*
  The above theorem @{text wt_kil_complete} is all nice'n shiny except
  for one assumption: @{term "map OK phi \<in> list (length bs) (states G maxs (1+size pTs+mxl))"}  
  It does not hold for all @{text phi} that satisfy @{text wt_method}.

  The assumption states mainly that all entries in @{text phi} are legal
  types in the program context, that the stack size is bounded by @{text maxs},
  and that the register sizes are exactly @{term "1+size pTs+mxl"}. 
  The BV specification, i.e.~@{text wt_method}, only gives us this
  property for \emph{reachable} code. For unreachable code, 
  e.g.~unused registers may contain arbitrary garbage. Even the stack
  and register sizes can be different from the rest of the program (as 
  long as they are consistent inside each chunk of unreachable code).
  
  All is not lost, though: for each @{text phi} that satisfies 
  @{text wt_method} there is a @{text phi'} that also satisfies 
  @{text wt_method} and that additionally satisfies our assumption.
  The construction is quite easy: the entries for reachable code
  are the same in @{text phi} and @{text phi'}, the entries for
  unreachable code are all @{text None} in @{text phi'} (as it would
  be produced by Kildall's algorithm). 

  Although this is proved easily by comment, it requires some more
  overhead (i.e.~talking about reachable instructions) if you try
  it the hard way. Thus it is missing here for the time being.

  The other direction (@{text wt_kil_correct}) can be lifted to
  programs without problems:
*}
lemma is_type_pTs:
  "[| wf_prog wf_mb G; (C,S,fs,mdecls) \<in> set G; (sig,rT,code) \<in> set mdecls; 
      t \<in> set (snd sig) |]
  ==> is_type G t"
proof -
  assume "wf_prog wf_mb G" 
         "(C,S,fs,mdecls) \<in> set G"
         "(sig,rT,code) \<in> set mdecls"
  hence "wf_mdecl wf_mb G C (sig,rT,code)"
    by (unfold wf_prog_def wf_cdecl_def) auto
  hence "\<forall>t \<in> set (snd sig). is_type G t" 
    by (unfold wf_mdecl_def wf_mhead_def) auto
  moreover
  assume "t \<in> set (snd sig)"
  ultimately
  show ?thesis by blast
qed


theorem jvm_kildall_correct:
  "wt_jvm_prog_kildall G ==> \<exists>Phi. wt_jvm_prog G Phi"
proof -  
  assume wtk: "wt_jvm_prog_kildall G"

  then obtain wf_mb where
    wf: "wf_prog wf_mb G"
    by (auto simp add: wt_jvm_prog_kildall_def)

  let ?Phi = "\<lambda>C sig. let (C,rT,(maxs,maxl,ins,et)) = the (method (G,C) sig) in 
              SOME phi. wt_method G C (snd sig) rT maxs maxl ins et phi"
   
  { fix C S fs mdecls sig rT code
    assume "(C,S,fs,mdecls) \<in> set G" "(sig,rT,code) \<in> set mdecls"
    with wf
    have "method (G,C) sig = Some (C,rT,code) \<and> is_class G C \<and> (\<forall>t \<in> set (snd sig). is_type G t)"
      by (simp add: methd is_type_pTs)
  } note this [simp]
 
  from wtk
  have "wt_jvm_prog G ?Phi"
    apply (unfold wt_jvm_prog_def wt_jvm_prog_kildall_def wf_prog_def wf_cdecl_def)
    apply clarsimp
    apply (drule bspec, assumption)
    apply (unfold wf_mdecl_def)
    apply clarsimp
    apply (drule bspec, assumption)
    apply clarsimp
    apply (drule wt_kil_correct [OF _ wf])
    apply (auto intro: someI)
    done

  thus ?thesis by blast
qed

end